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We show that the study of the collective oscillations in a harmonic trap provides a very sensitive test of
the equation of state of a Fermi gas near a Feshbach resonance. Using a scaling approach, whose high
accuracy is proven by comparison with exact hydrodynamic solutions, the frequencies of the lowest
compressional modes are calculated at T � 0 in terms of a dimensionless parameter characterizing the
equation of state. The predictions for the collective frequencies, obtained from the equations of state of
mean-field BCS theory and of recent Monte Carlo calculations, are discussed in detail.
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The availability of Feshbach resonances and the conse-
quent possibility of tuning the interatomic potential
through the application of a magnetic field have recently
stimulated much experimental and theoretical work on the
crossover from Bose-Einstein condensation (BEC) to BCS
in ultracold trapped Fermi gases [1]. Several relevant and
already measured quantities, such as the release energy, the
density profiles, and the frequency of the collective oscil-
lations, are related in a sensitive way to the equation of
state of the homogeneous system which varies significantly
through the crossover. For small and negative values of the
scattering length a the equation of state approaches the
limit of a noninteracting Fermi gas, while for small and
positive values, bound molecules can be formed and, at
zero temperature, the system behaves as a dilute molecular
Bose-Einstein condensed gas. In the intermediate regime
important theoretical issues remain. For example, the in-
termolecular scattering length on the BEC side exhibits a
nontrivial dependence on the free atom scattering length
[2,3]. Furthermore, such interactions should give rise to
beyond mean-field corrections in the equation of state [4],
not accounted for by the Bogoliubov approximation.
Similar corrections could also result from the composite
nature of the molecules. Finally, near resonance, where the
scattering length becomes larger than the average distance
between particles, no simple many-body approach is ap-
plicable to this strongly correlated system. Numerical cal-
culations of the equation of state of a uniform interacting
Fermi gas at T � 0 along the crossover have been carried
out in the past along the mean-field BCS (MF-BCS) ap-
proach [5] and, more recently, through ab initio simula-
tions based on Monte Carlo (MC) algorithms [6,7].

Since the frequencies of the collective oscillations can
be measured with high precision, it is of major interest to
investigate their dependence on the equation of state along
the crossover. From a careful and systematic analysis of the
frequencies, one should be able to infer the actual equation
of state. It has already been pointed out [8] that the collec-
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tive frequencies of a T � 0 superfluid Fermi gas, trapped in
a harmonic potential, approach well defined values in the
important BEC and unitarity limit regimes, where the
density dependence of the chemical potential can be in-
ferred from general arguments. In the intermediate region,
various investigations, based on the use of the hydrody-
namic theory of superfluids and suitable parametrizations
of the equation of state, have appeared recently [9–15]. In
the mean time, first experimental results [16,17] on the
frequencies of the lowest axial and radial compression
modes on ultra cold gases of 6Li across the Feshbach
resonance have also become available.

The purpose of this Letter is to establish the accuracy
needed in the measured frequencies in order to determine
experimentally the equation of state. With this goal in
mind, we will focus on two specific theories for the equa-
tion of state which exhibit a rather different density depen-
dence of the chemical potential through the crossover.
These are the MC calculations and the MF-BCS approxi-
mation discussed above. These equations of state are then
employed within a hydrodynamic approach in order to
calculate the relevant collective frequencies. Hydro-
dynamic theory is justified at T � 0 by the superfluid
nature of the system and has been already successfully
employed in trapped Bose-Einstein condensed gases. We
will restrict here the discussion to the case of positive
scattering lengths, where the experimental conditions for
achieving the superfluid hydrodynamic regime are less
severe, in contrast with the BCS regime where the small-
ness of the gap gives rise to stringent constraints [14]. The
determination of the collective frequencies, for a given
equation of state, is by no means a trivial task because,
in general, the solutions must be found numerically in the
nonsymmetric configurations relevant for experiments.
Furthermore, since the frequencies vary only moderately
with the scattering length, the analysis should be carried
out with high precision. In the following, we will discuss
only the lowest relevant modes, namely, the monopole
4-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.030404


PRL 95, 030404 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
15 JULY 2005
mode for spherical geometry and the lowest axial com-
pression mode for cigar configurations.

Let us first start discussing the two equations of state
and, in particular, the dependence on density n of the
chemical potential ��n�. Instead of the density, we use
the Fermi wave vector kF defined by k3F � 3�2n. We
restrict ourselves to the case of a wide Feshbach resonance
where the scattering length a is the only relevant length
associated with the two-body interaction, as it is indeed the
case [18] for the dominant resonance in 6Li and also in 40K.
This leads one to introduce the dimensionless coupling
parameter 1=kFa, which varies from zero to infinity
when one goes from unitarity to the bosonic limit of
molecules. Similarly, we express the chemical potential
in units of the Fermi energy EF � @

2k2F=2m. The equations
of state are displayed in Fig. 1.

At unitarity the result �=EF � 0:44 extracted from MC
calculations [6,7] is in fair agreement with experiments
[19,20], while the MF-BCS theory gives a larger result
�=EF � 0:59. The slopes near unitarity are very similar,
but the approach to the BEC limit is quite different, reflect-
ing the fact that MC calculations are consistent with the
recent prediction aM � 0:6a for the molecule-molecule
scattering length [3], while the MF-BCS [5] yields the
significantly larger value aM � 2a.

In order to evaluate the frequencies of the collective
modes, different routes have been followed in the litera-
ture. One class of methods assumes that the equation of
state of the gas can be closely approximated by a poly-
tropic expression ��n� ’ n and makes use of the analyti-
cal results known [21] for this case. Note that the
polytropic approximation is exact in the BEC regime
where � � gn, as well as at unitarity where dimension-
ality considerations yield � / n2=3. Other approaches are
based on exact numerical solutions of the hydrodynamic
equations [22]. Here we will consider another method
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FIG. 1. Chemical potential ��n� (shifted by half the molecular
binding energy @2=2ma2) in units of the Fermi energy EF as a
function of the coupling parameter 1=kFa. The Monte Carlo data
are extracted from Ref. [7].

03040
based on the use of scaling transformations. Scaling has
been already successfully employed to describe the dy-
namical behavior of Bose-Einstein condensates [23,24].
We will see that the results of the scaling approach agree
remarkably well with exact solutions of hydrodynamic
equations in all cases of practical interest we have consid-
ered. The advantage of the proposed method is its full
applicability to anisotropic traps where exact numerical
solutions are not always available. On the other hand, it can
be also applied to regimes where the equation of state is not
of the polytropic form.

In our scaling approach, we use the following ansatz for
the space dependence of the density distribution:

n�x1; x2; x3; t� � �t�n0�a1�t�x1; a2�t�x2; a3�t�x3�; (1)

where n0�r� is the equilibrium density and �t� � �iai�t�.
The factor �t� ensures that the total particle numberR
drn�r; t� is conserved. Correspondingly, we take

vs;i�r� � �� _ai=ai�xi for the superfluid velocity field,
which ensures that the equation of continuity _n�r� �
r	n�r�vs�r�
 � 0 is automatically satisfied. We will then
insert the above ansatz for the density and for the velocity
field into the hydrodynamic Lagrangian

L �
Z
dr
�
1

2
mn�r�v2s�r� � e�n�r��� n�r�Vho�r�

�
(2)

of our zero temperature superfluid. Here m is the atomic
mass, and the chemical potential ��n� is linked to the
energy per unit volume e�n� by ��n� � @e�n�=@n. The
density dependent energy term e�n� in the Lagrangian
has been here obtained in the local density approximation,
consistent with the hydrodynamic description.

In the following, we will specialize to the case of small
oscillations, suited to the collective modes in the linear
regime. Writing ai � 1� �i, where �i � 1, in the equa-
tions of motion obtained from the Lagrangian (2), we have
to carry out the calculation up to first order in �i. After
some algebra, we find the following simple eigenvalue
equations for the mode frequencies !:

�!2
i

X
j

�j � 2!2
i �i � !2�i; (3)

where we have naturally used ��i � �!2�i and we have
defined the relevant dimensionless parameter

� �
3

2

hn @�@ni

hVhoi
� 1; (4)

where Vho�r� � �i�1=2�m!2
i x

2
i is the trapping harmonic

potential with x1 � x, x2 � y, and x3 � z. The brackets are
for the equilibrium average over the gas cloud, for ex-
ample, hVhoi �

R
drn0�r�Vho�r� and the density profile is

evaluated in the Thomas-Fermi approximation ��n� �
Vho�r� � �0, consistent with the hydrodynamic descrip-
tion. Notice that the parameter � does not depend on the
anisotropy of the trap. Using the virial theorem it is easy to
prove that, for a polytropic equation of state��n� / n, the
4-2
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FIG. 2. Reduced square !2 � !2=�2 of the lowest monopole
frequency in isotropic trap for the MC and the MF-BCS equation
of states as a function of 1=kF�0�a, where kF�0� is the Fermi
wave vector at the trap center. Solid lines correspond to the
results of all our methods, which cannot be distinguished at this
scale. Inset: (uncorrected) quasipolynomial (dot-dashed line),
corrected polytropic (solid line), and scaling (dashed line), all
compared to the corrected quasipolynomial model.
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parameter � coincides with the exponent  so that at
unitarity one has � � 2=3, while in the BEC regime � �
1. In general, the coefficient � is a function of the dimen-
sionless combination kF�0�a, where kF�0� is fixed by the
central value of the Thomas-Fermi density distribution
according to k3F�0� � 3�2n�0�. The actual dependence of
� on kF�0�a is determined only by the equation of state
��n�. Finally, the above derivation can be also reformu-
lated as starting from an exact variational principle for the
hydrodynamic frequencies.

In the isotropic case !i � �, in addition to the quadru-
pole mode!2 � 2�2, Eq. (3) gives the result !2 � �3��
2��2 for the monopole mode and, in particular, the well-
known result ! �

���
5

p
� in the BEC limit � �  � 1. In

the axisymmetric geometry !1 � !2 � !?,!1 � !z, we
find, in addition to the quadrupole mode !2 � 2!2

?, the
two m � 0 compressional solutions:

!2�
1

2

�
2���1�!2

?����2�!2
z

�
���������������������������������������������������������������������������������
	2���1�!2

?����2�!2
z


2�8�2!2
?!

2
z

q �
: (5)

For the relevant case of cigar geometry !z � !?, one
finds !2 � !2

z	3� 1=��� 1�
 for the lowest axial com-
pression mode, giving!=!z �

��������
5=2

p
in the BEC limit. For

the radial compressional mode, one instead finds !2 �

2��� 1�!2
?.

We will now show that the scaling result is extremely
accurate by comparing its predictions with essentially ex-
act solutions of the hydrodynamic equations. Our method
[22] makes use of known exact analytical results for a large
class of model equation of states �anal�n�. Then the actual
��n� is very closely approximated by one member of this
class. Moreover, the effect of the small difference between
��n� and�anal�n� is taken into account using a perturbative
approach (this is called the ‘‘corrected’’ model). The ab-
solute precision of this method has been checked [22] to be
of order 10�3 at least. The relevant ingredients needed to
calculate the mode frequencies are the reduced gas density
in the trap �n�r� � n�r�=n0 and the corresponding chemical
potential ���r� � ��r�=�0, both normalized to their central
values n0 and�0. A class of soluble models is described by
the law �n � ��p exp	�K

k�0Pk ��
k
, where p and Pk are pa-

rameters. Here we consider only the cases K � 0 (which is
the polytropic model �n � ��p) and K � 1, because they
give already by far a good enough precision. The model
K � 1 is called ‘‘quasipolynomial.’’ In this last case the
solution is not fully analytical, but it involves only finding
the proper root of a low order polynomial, which is a quite
trivial numerical task [22].

We have carried out the calculations of the collective
frequencies in two different physical situations. The first
one is the isotropic geometry, which is particularly conve-
nient for deriving exact solutions of the hydrodynamic
equations. The second one is the elongated cigar geometry
employed in many experimental setups. Note that the
03040
results !2 � 4 for the unitary case and !2 � 5 for the
BEC limit are much more separated in the spherical case
than in the cigar geometry where one finds instead, for the
lowest axial mode, !2 � 2:4 and !2 � 2:5, respectively.

We display our results in Fig. 2 for the spherical geome-
try. We have considered the two equations of state provided
by MC calculations and by the MF-BCS approximation.
The accuracy of the scaling approach is in both cases
remarkable since at the scale of this figure it coincides
with the exact result. The excellent quality of the scaling
approach can be understood because it is exact not only for
the polytropic case, but also if one includes first order
corrections to the polytropic equation of state [25], as
can be proven from the variational formulation mentioned
above. In order to display the precision of our results, we
have plotted the results in the inset of Fig. 2 on a much
larger scale, taking the MC equation of state as an example.
More precisely, we have taken as a reference the frequency
!2qpcorr obtained by the corrected quasipolynomial method,
which we believe is the most accurate. Indeed, we see first
that the corrected polytropic model and the corrected
quasipolynomial are in remarkable agreement, since the
difference between them is at most 8� 10�4. Hence the
convergence of our method toward the exact result is al-
most already achieved at the level of the simpler corrected
polytropic model. This clearly proves that the much more
precise corrected quasipolynomial model is certainly ex-
tremely accurate, since it is without correction already
within at most 10�2 of the exact result. The next striking
and important result is the quite remarkable accuracy of the
scaling method which is essentially never beyond 3�
10�3 of the exact result for the MC equation of state (the
case of the MF-BCS is even better). This gives a full
validation to the scaling approach.
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axial mode frequency in very elongated trap for the MC and
the MF-BCS equation of states, as a function of k0Fa, where k0F �
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Experimental results are from Ref. [17]. The inset gives the
relation between k0F and kF�0�, used in Fig. 2.
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An essential feature emerging from the results of Fig. 2
is that the separation between the MC and the MF-BCS
results is definitely much larger than any theoretical un-
certainty within the T � 0 hydrodynamic picture. It should
be consequently possible to distinguish them experimen-
tally. In particular, the observation of an enhancement of !2

above 2.5, for k0Fa� 1, would provide evidence for beyond
mean-field corrections [4,26], which are absent in MF-
BCS.

Finally, we turn to the cigar geometry. We have carried
out an analysis of the lowest axial compressional mode by
comparing the results obtained from the scaling method
with our exact results, in the case studied in Ref. [15].
Again the agreement is perfect. In Fig. 3 we report the
predictions of the scaling approach applied to the MC and
the MF-BCS equations of state. In the same figure, we also
show the experimental results from [17] for the axial mode
[27]. It is quite intriguing that these data look in better
agreement with the mean-field BCS equation of state than
with the Monte Carlo one. This might be due to finite
temperature effects. Clearly further experimental work
would be important to settle this point, which is essential
for our understanding of the BEC-BCS crossover, and, in
particular, to decide which equation of state better de-
scribes the experimental reality.
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