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Thermodynamics of a Fermi Liquid beyond the Low-Energy Limit
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We consider the nonanalytic temperature dependences of the specific heat coefficient, C�T�=T, and spin
susceptibility, �s�T�, of 2D interacting fermions beyond the weak-coupling limit. We demonstrate within
the Luttinger-Ward formalism that the leading temperature dependences of C�T�=T and �s�T� are linear in
T, and are described by the Fermi liquid theory. We show that these temperature dependences are
universally determined by the states near the Fermi level and, for a generic interaction, are expressed via
the spin and charge components of the exact backscattering amplitude of quasiparticles. We compare our
theory to recent experiments on monolayers of He3.
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The Landau Fermi liquid (FL) theory states that the low-
energy properties of an interacting fermionic system are
determined by fermions in the vicinity of the Fermi sur-
face, and are similar to that of weakly interacting quasi-
particles. At the lowest temperatures, when the decay of
quasiparticles can be neglected, the specific heat C�T� / T
and spin susceptibility �s�T� � const of a FL differ from
the corresponding quantities for the Fermi gas only via the
renormalizations of the effective mass and g factor [1].
However, this low-temperature limit of the FL theory,
considered by Landau, cannot tell whether the subleading
terms in T are analytic or not, and whether they come only
from low-energy states (and are therefore described by the
FL theory) or from the states far away from the Fermi
surface.

For noninteracting fermions, the subleading terms in
C�T�=T and �s�T� scale as T2 and come from high-energy
states. However, it was found in the 1960s that in 3D
systems, the leading correction to C�T�=T due to interac-
tion with either phonons [2] or paramagnons [3] is non-
analytic in T (T2 lnT) and comes from the states in the
vicinity of the Fermi surface. The same result was later
shown to hold for the electron-electron interaction [4].
More recently, it was shown by various groups [5–10]
that the temperature dependence of C�T�=T is also non-
analytic in 2D and starts with a linear-in-T term. The same
behavior was also found for the uniform spin susceptibility
[6,8–10]. Two of us have shown [6] that, to second order in
short-range interaction, these linear-in-T terms originate
exclusively from the scattering of fermions with zero total
momentum and either small or near 2kF momentum trans-
fers (‘‘backscattering’’).

In this Letter, we consider the specific heat and spin
susceptibility for a generic 2D Fermi liquid. The leading
(constant) terms in C�T�=T and �s�T� in a generic Fermi
liquid are expressed via the two harmonics—F�1�

c and
F�0�
s —of the quasiparticle interaction function F�
� or,

equivalently, via the same harmonics of the scattering
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amplitude A�
� (c and s refer to charge and spin compo-
nents). We show that, although the linear-in-T terms in
C�T�=T and �s�T� are also universally expressed via the
scattering amplitude, they are determined by A�
� at a
particular angle 
 � �, rather than by A�
� averaged
over the Fermi surface. As there is no simple relation
between A��� and F���, these subleading terms cannot
be simply expressed via the Landau function. The only
exception is the Coulomb interaction in the high-density
(small rs) regime, when the O�T� term in C�T�=T can be
expressed via F���.

To shorten the presentation, we discuss in some detail
the calculation for C�T�, and then present the result for
�s�T�, which can be obtained in a similar manner [11]. The
most straightforward way to obtain C�T� beyond the lead-
ing term in T is to find the thermodynamic potential �T�
within the Luttinger-Ward approach [12] and then use the
relation C�T� � �T@2=@2T. The thermodynamic poten-
tial  is expressed as
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X
!n

Z d2k

4�2

�
ln�G0G

�1���G�
X
�
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(1)

where 0 is the thermodynamic potential of the free Fermi
gas per unit area, G0 � �i!n � �k�

�1, G � �i!n � �k �
���1, !n is the Matsubara frequency, � is the exact (to all
orders in the interaction) self-energy, and �� is the skel-
eton self-energy of order �. Both �� and the sum � �P

��� are evaluated at finite T. Diagrams associated with
the first two terms in (1) correspond to the self-energy
insertions into the free thermodynamic potential 0 �

2T�!n

R
d2k=�2��2 lnG0�!n; k�, diagrammatically repre-

sented by a loop [Fig. 1(1a)]. One can readily verify that
such diagrams simply renormalize the constant term in
C�T�=T. The nonanalytic temperature dependence of
C�T�=T comes from the third term in (1).

To understand the origin of the nonanalyticity in �T�,
consider first a weak short-range interaction U�q�. To
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FIG. 1. Nontrivial second-order and third-order diagrams for
the thermodynamic potential. For the Coulomb potential, dia-
grams (1a), (2b), and (3c) represent ring series.
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second order in U, the skeleton term gives rise to diagrams
(2a) and (2b) in Fig. 1. Assume momentarily that U is a
constant. Then each of the two diagrams can be reex-
pressed as a product of two particle-hole bubbles
��q;�n�, so that

� � �
1

2
TU2

X
�

Z d2q

4�2 �
2�q;�n�; (2)

where � 	 �0.
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It is intuitively clear that the nonanalyticity in �
should be related to that in ��q;�n�. There are two re-
gions of q where � is nonanalytic. The first region is near
q � 0, where ��q;�n� � ��m=2���1� j�nj=��

2
n �

�vFq�2�1=2�. For vFq � j�nj, the Landau-damping term
(j�nj=q) is nonanalytic in q. This nonanalyticity leads to a
long-range tail of ��r;�n� in real space: ��r;�n� /
j�nj=r. The second region is near 2kF, where ��q;�n� �

��m=2���1� � �q�
������������������
�q2 � ��2

n

q
�1=2�, with �q � �q� 2kF�=

2kF and �� � �=2kFvF. The singularity at �q � 0 and
�n � 0 is known as the Kohn anomaly. The nonanalyticity
in ��T� comes from the dynamic Kohn anomaly, which is
the term j ��j=

������
j �qj

p
in �� �q;�n � 0� for � �q � j�nj=vF.

This term leads to a long-range dynamic Friedel oscilla-
tion: ��r;�n� / j�nj cos�2kFr�=

���
r

p
.

Integrating in Eq. (2) over the two momentum regions
where ��q;�n� is nonanalytic, we find that each of these
two regions contributes a logarithmic singularity of the
form �2

n lnj�nj, the prefactors being the same. This loga-
rithmic singularity is the key effect. Had it been absent, the
Matsubara sum of �2

n would have been controlled by high
frequencies, of order EF, and would have led to an analytic
expansion � � const� T2 �    . The presence of the
logarithm changes the story, as now the frequency sum
contains a universal contribution from frequencies of order
T. Using the Euler-Maclaurin summation formula, we
obtain
� � �
4�u2T3
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where u � mU=2�, and M � EF=2�T � 1. Those terms
in (3) that depend on M yield a regular expansion for � in
powers of T2, whereas the M-independent term [the third
term in the second line of Eq. (3)] gives rise to a non-
analytic � / T3, and hence to a T2 term in C�T�.

Next, we take a more careful look at which four-fermion
vertices actually contribute to the nonanalytic part of
C�T�. For the 2kF part, the answer follows immediately
from the observation that, for a given direction of q, the
Kohn anomaly comes from the internal fermionic mo-
menta near q=2 and �q=2 in both bubbles in diagrams
(2a) and (2b) of Fig. 1. The relevant vertex then has the
momentum structure �k;�k;�k;k�, which corresponds
to backscattering.

For the q � 0 part, the momentum structure is less
obvious as, at the first glance, the internal momenta in
the two bubbles in diagrams (2a) and (2b) of Fig. 1 are
uncorrelated. However, the logarithmic singularity of the
momentum integral comes only from the j�nj=q term in
each polarization bubble. One can show that this term
comes from internal momenta that are nearly orthogonal
to q. Since the relevant momenta in the two bubbles are
almost orthogonal to the same vector q, they must be either
nearly parallel or nearly antiparallel to each other. We
verified that the contribution from the near parallel mo-
menta, i.e., from forward scattering, vanishes and the full
result comes from nearly antiparallel momenta. This im-
plies that the q � 0 contribution to � involves a vertex
with the momentum structure (k;�k;k;�k). This vertex
is also a part of the backscattering amplitude.

We can now extend our second-order analysis to a finite-
range interaction U�q�. That only backscattering is relevant
means that only U�0� and U�2kF� contribute to the T term
in C�T�=T. The contribution from diagram (2b) of Fig. 1 is
proportional to U2�0� �U2�2kF�, whereas that from the
diagram (2a) is proportional to U�0�U�2kF�. Collecting the
prefactors, we obtain for the nonanalytic part of the spe-
cific heat �C 	 C�T� � !T

�C�T�=T � ��u20 � u22kF � u0u2kF �
3m �3�

�
T
EF

; (4)

where u0 � mU�0�=2� and u2kF � mU�2kF�=2�. This
agrees with the result obtained in Ref. [6] by expressing
C�T�=T via the self-energy.

Consider now what happens when we add higher-order
terms in U. They lead to two types of corrections: self-
energy corrections to the fermionic lines in the two bubbles
and corrections to the four-fermion vertices. The self-
energy corrections are of the FL type: they account for
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the appearance of the quasiparticle Z factors and for the
replacement of the bare fermionic mass m by m�. Vertex
corrections generate terms with more bubbles. A generic
diagram of nth order has n bubbles. To obtain a T3 con-
tribution to �T�, we need to take dynamic, �n=Q terms
from two bubbles out of n and set �n � 0, Q ! 0 in the
rest n� 2 bubbles, because any extra power of �n=Q
eliminates the logarithmic singularity in the frequency
integrand in ��T�. It is intuitively plausible that once
two dynamic bubbles are chosen at the nth order, the rest of
the nth order diagram constitutes the nth order correction
to the static four-point vertex. If this conjecture is true, the
series of the diagrams for the nonanalytic T3 term in the
thermodynamic potential can be reexpressed in terms of
the two-bubble diagrams in which U�0� and U�2kF� are
replaced by exact static vertices ��k;�k;k;�k� and
��k;�k;�k;k�. Accordingly, �C�T�=T is given by the
same expression as in (4), but with � instead of U.

This conjecture, however, needs to be verified as differ-
ent diagrams for the thermodynamic potentials contain
different combinatorial factors, and it is a priori unclear
whether these factors, combined with those counting the
number of ways two dynamic bubbles can be chosen, give
the right coefficients in the perturbative series for the static
vertices. To verify that this is the case, we evaluated
explicitly the T3 term in the thermodynamic potential to
third order in U�q�, and compared the result with that given
by the two-bubble diagrams with the renormalized static
vertices, evaluated independently. We found that the two
expressions are identical. In what follows, we assume that
this equivalence survives to all orders in U�q�.

The renormalization from U�0� and U�2kF� to
��k;�k;k;�k� and ��k;�k;�k;k� includes static cor-
rections coming from the states both away from and near to
the Fermi surface [the latter produce powers of static
���n � 0; Q ! 0� � �m=2� [1] ]. In other words,
��k;�k;k;�k� and ��k;�k;�k;k� include all vertex
corrections except for the terms coming from the dynamic
part of the polarization bubble. In conventional notations
[1], the fully renormalized ��k;�k;k;�k� and
��k;�k;�k;k� are then related to �k�
 � ��, which is
the limit of � � 0 and q ! 0 of ��k;p;k� q;p� q�,
where both k and p are on the Fermi surface and 
 is the
angle between these two vectors.

The matrix (in the spin space) �̂k��� is related to the
quasiparticle scattering amplitude via Â��� � Z2�̂k���
[1]. Decomposing the scattering amplitude for a spin-
invariant interaction into the charge and spin components,
Ac and As, as

Â��� �
�v�

F

kF
�Ac���Î � As���%̂  %̂� (5)

and comparing (5) with a similar decomposition for �̂k���

�̂k��� � �k�k;�k;k;�k�Î � �1=2��k�k;�k;�k;k�

� �Î � %̂  %̂�; (6)

we obtain
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Z2�k�k;�k;k;�k� �
�v�

F

kF
�Ac��� � As����;

Z2�k�k;�k;�k;k� � �2
�v�

F

kF
As���:

(7)

Substituting Z2�k�k;�k;k;�k� instead of U�0� and
Z2�k�k;�k;�k;k� instead of U�2kF� into (4), we find
the nonanalytic part of C�T� in a generic Fermi liquid

�C�T�=T � �



3 �3�
2�

�

m�

kF

�
2
�A2

c��� � 3A2
s����T: (8)

A similar generalization of the second-order result for
�s�T� [6] yields

��s�T� �
m�

4k2F
�s�0�A

2
s���T; (9)

where �s�0� is the spin susceptibility at T � 0.
Equations (8) and (9) are the two main results of this

Letter. We see that the nonanalytic parts in C�T� and �s�T�
are parametrized by two scattering amplitudes, Ac��� and
As���. These amplitudes are the new parameters in an
extended version of the FL theory, which includes non-
analytic terms.

Two comments are in order here. First, the amplitudes
Ac;s��� describe full vertices with zero total momentum,
and therefore diverge at the Kohn-Luttinger pairing insta-
bility. Even above Tc, Ac;s��� depend on T logarithmically,
1=�a� b lnT=EF�, because of the renormalizations in the
Cooper channel [13]. This extra logarithmic dependence
on T is likely to be small for T relevant to the experiments
(see below), and we neglect it. Second, Eqs. (8) and (9) are
valid for a circular Fermi surface (even if the quasiparticle
dispersion differs from k2=2m). For the anisotropic Fermi
surface, the linear-in-T dependences of �C�T�=T and
��s�T� survive as long as the Fermi surface has no in-
flection points, but the prefactors involve the curvature of
the dispersion. For Fermi surfaces with inflection points,
the powers of T change [14].

Notice also that Ac��� and As��� cannot be simply
expressed in terms of the quasiparticle interaction func-
tion F�
�, which, we recall, is related to Z2�̂!�
� �
��v�

F=kF��Fc�
�Î � Fs�
�%̂  %̂�. The harmonics A�n�
a and

F�n�
a (a � c; s) are simply related [A�n�

a � F�n�
a =�1� F�n�

a �
in 2D], but Aa��� is expressed only via infinite series of har-
monics of the Landau function: Aa�����1

n�0��1�nF�n�
a =

�1�F�n�
a �. A simple relation between Â��� and F̂��� does

exist if the interaction U�q� is strongly peaked at q � 0. In
this situation, only corrections due to U�0� matter. These
corrections come from ring diagrams and can be summed
up exactly with the result Ac��� � Fc���=�1� Fc����. If,
in addition, Fs�
� � 1, the contribution to the specific heat
from Fc��� dominates, and the singular term in the specific
heat becomes

�C�T�=T � �
3m �3�
4�

T
EF



Fc���

1� Fc���

�
2
: (10)
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This agrees with Ref. [15]. For the Coulomb interaction,
Fc��� ! 1. The charge amplitude Fc��� drops out from
(10), and the singular term in the specific heat becomes
independent of rs [7,15].

Scattering amplitudes in Eqs. (8) and (9) can be ex-
tracted from a measurement of C�T�=T and �s�T� on the
same system. To the best of our knowledge, a linear-in-T
dependence of �s has not been measured yet. However, the
linear temperature dependence of C�T�=T has been ob-
served in several experiments on fluid monolayers of He3

adsorbed on graphite [16–18]. To a reasonable accuracy,
the data can be fitted into a form C=�NT=E�

F� � !�T=E�
F�,

where N is the density per unit area in a fluid monolayer,
E�
F � EF�m=m�� and !�x� � a� bx for small x [18]. Both

a and b vary somewhat with N, but the variation is not
dramatic, and to reasonable accuracy a� 3–3:3 and b�
10–14 [19]. According to Eqs. (3) and (8), a � �2=3 �
3:3 and b � 0:9�A2

c��� � 3A2
s����. A fit to the data then

yields A2
c��� � 3A2

s��� � 11–15:5 [19]. To estimate Ac���
and As��� separately, we assume that the scenario of ‘‘al-
most localized fermions’’ [20], which describes success-
fully the properties of bulk He3, is applicable to the 2D
case as well. In this scenario, the interaction in the charge
channel is strong, whereas that in the spin channel is
moderate. A strong interaction in the charge channel means
that F�n�

c � 1, in which case the consecutive terms in series
for Ac��� almost cancel each other, and the result is likely
to be small. A precise value for Ac��� depends on how F�n�

c

decrease with n. However, in two model cases F�n�
c �

g=�1� n2� and F�n�
c � ge�n, we obtained almost identical

results: A2
c��� � 0:25 in the limit of g � 1. This suggests

that the observed value A2
c��� � 3A2

s��� � 11–15:5 is al-
most entirely due to the spin part of the amplitude. Ne-
glecting A2

c���, we obtain jAs���j � 1:9–2:3. If the n � 0
harmonic of Fs dominates the result for As���, i.e.,
As����F�0�

s =�1�F�0�
s �, then F�0�

s � ��0:66–0:7�, which is
consistent with the value of F�0�

s � �0:75 in bulk He3 [21].
Notice also that if Ac��� can be neglected compared to

As���, �C�T�=T and ��s�T� contain only one unknown
parameter [As���]. In this situation, the ratio K �
�C�T�=�T��s�T�� is expressed only via the parameters
describing the leading, analytic parts of C�T� and �s: K �
�18 �3�m�=��s�0�.

In addition, As��� determines the slope of the linear-
in-T correction �%�T� to the conductivity of a dirty 2D FL
in the ballistic regime [22], which allows one to express
��s�T� in terms of �%�T� as ��s�T�E�

F=�s�0�T � �1�
�%�T�E�

F=%�0�T�
2=72. These predictions are amenable to

a direct experimental verification.
To summarize, in this Letter we showed that the 2D

Fermi liquid theory describes not only the leading, constant
terms in the specific heat coefficient C�T�=T and the spin
susceptibility �s�T�, but also subleading, linear-in-T terms.
We demonstrated that these terms come from backscatter-
ing (zero total momentum) processes, and are universally
02640
expressed via the spin and charge components of the
scattering amplitude at the angle 
 � �. We extracted
the spin component of the scattering amplitude from the
experimental data on C�T� for a monolayer of He3.
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