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Scaling Properties in the Production Range of Shear Dominated Flows
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Dipartimento di Meccanica e Aeronautica, Università di Roma La Sapienza, Via Eudossiana 18, 00184 Roma, Italy

(Received 11 January 2005; published 7 July 2005)
0031-9007=
In large Reynolds number turbulence, isotropy is recovered as the scale is reduced and homogeneous-
isotropic scalings are eventually observed. This picture is violated in many cases, e.g., wall bounded flows,
where, due to the shear, different scaling laws emerge. This effect has been ascribed to the contamination
of the inertial range by the larger anisotropic scales. The issue is addressed here by analyzing both
numerical and experimental data for a homogeneous shear flow. In fact, under strong shear, the alteration
of the scaling exponents is not induced by the contamination from the anisotropic sectors. Actually, the
exponents are universal properties of the isotropic component of the structure functions of shear
dominated flows. The implications are discussed in the context of turbulence near solid walls, where
improved closure models would be advisable.
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FIG. 1. Sketch of the shear flow and nomenclature: the mean
flow U�y�, in the x 
 x1 direction, is a function of y 
 x2, with
z 
 x3. For a linear mean profile, the shear rate S � dU=dy is
constant and the flow is spatially homogeneous. In wall bounded
flows the shear rate depends on distance from the wall. The field
is the sum of average and fluctuation, with the latter denoted by
u,  � 1; 2; 3— i.e., ux=y=z, or u, v, w. The production of
turbulent kinetic energy is � � Shuxuyi, where huxuyi is the
relevant component of the Reynolds tensor huu�i. The square
root of its trace is the fluctuation intensity qrms �

���������������
huui

p
. The

dissipation rate is � � h1=2��@u=@x� � @u�=@x��
�@u=@x� � @u�=@x�i, where � is the kinematic viscosity of
the fluid. The Kolmogorov dissipative scale is given by � �
��3=��1=4 and the Taylor microscale is defined via � �
5�q2rms=�2. Re� � �qrms=� is the relevant form of the
Reynolds number.
Introduction.—One of the issues in fluid dynamics con-
cerns the small scale behavior of turbulence. According to
Kolmogorov, turbulent flows at sufficiently large Reynolds
number develop a range of scales, much smaller than the
integral scale of the system, where the dynamics is iso-
tropic, universal, and independent of viscosity. Statistical
observables, such as moments of velocity increments, are
then expected to exhibit power laws in terms of separation
with universal exponents. These scaling laws are normally
exploited in closures for the Navier-Stokes equations,
coarse grained at inertial scales. However, inertial range
predictions are often violated and this entails the failure of
the related closures, like it happens in shear dominated
flows, e.g., boundary layers near solid walls.

Actually, shear flows exhibit distinct ranges of scales,
see Fig. 1 for nomenclature and definitions. When the
Reynolds number is sufficiently large, a classical inertial
subrange [1] sets in between the dissipative scale, �, and
the energy injection scale, l. In equilibrium shear flows,

where production and dissipation balance, l � Ls �����������
�=S3

p
. In the inertial subrange the longitudinal spectrum

behaves like Exx�kx� / �2=3k�5=3
x , and the longitudinal

structure functions exhibit scaling laws, Sn / r��n�x [2],
with exponents consistent with homogeneous-isotropic
data. There is however a residual effect of the anisotropy,
as shown by the nth order structure tensors S�n�1;...;n�r�� �
h�u1

. . .�uni, where �u � u�x� � r�� � u�x�� [3].
The proper tool to address this issue is by projecting the
relevant tensors on the invariant subspaces of the rotation
group, the so-called SO(3) decomposition. Because of the
rotational invariance of the Navier-Stokes equations, such
SO(3) components are found to manifest pure scaling laws
in terms of separation r �

����������
rr

p
. The exponents are

independent of the flow details and the isotropic sector
behaves exactly as in isotropic turbulence. In the inertial
subrange, the anisotropic contributions are subleading and
the isotropic sector controls the small scale asymptotics
05=95(2)=024503(4)$23.00 02450
[3–5]. All these results rest on the assumption that, at
inertial scales, anisotropy is at most a weak perturbation
of an otherwise isotropic dynamics.

The production range of shear flows is less understood.
There, a perturbation approach cannot work, since anisot-
ropy is the prominent characteristic. Also, in the produc-
tion range, however, certain features seem to be universal.
Relative exponents—�rel�n� � ��n�=��3� [6]—show sys-
tematic differences with respect to classical results [7–9]
and consistent deviations are found in direct numerical
3-1  2005 The American Physical Society
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FIG. 2. Longitudinal structure functions vs separation, experi-
ments (symbols)—n � 2 (triangles), n � 3 (squares), n � 4
(delta), n � 5 (diamonds), and n � 6 (circles)—and LES (solid
line). Moments n � 3; 4; 5; 6 are multiplied by 2. Data normal-
ized by qrms, r� � r=�. In the experiment � ’ � ’ 0:85 m2 s�3,
S ’ 19 s�1, qrms ’

��������������������������
u2rms � 2v2rms

p
’ 0:6 ms�1, S ’ 8, and

Re� ’ 220. LES at S � 7 and Re� � 150, �� � �=� � 17,
L�
s � Ls=� � 70. Computational box: Lx � 4!, Ly � 2!,
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simulations (DNS), either in the presence [10–12] or ab-
sence of solid boundaries [13]. All these indications sup-
port the conjecture of a universal regime. Actually, in [11],
by analyzing DNS results for a channel flow through the
so-called extended self-similarity approach [6], a new form
of scaling law was devised for longitudinal structure func-
tions in the production range, as confirmed by experimen-
tal data from a boundary layer [8]. In [12], using
experimental data, a combined form of longitudinal struc-
ture function was proposed, able to incorporate both scal-
ing laws for the inertial and the production range in a single
composite observable with the same scaling exponents of
standard homogeneous-isotropic turbulence; see also [13]
for related aspects. However, the origin of these scalings
has never been addressed so far. Actually, the asymptotic
approach for small shear may lead one to believe that, in
the standard longitudinal structure functions, the isotropic
scalings would disappear due to contamination from the
anisotropic sectors that would spoil the classical power
laws at large scales. In fact, we find here that the origin
of the observed alteration in the longitudinal structure
functions is by no way induced by contamination. It is
instead the behavior of the isotropic sector itself to be
dramatically modified by the shear.

Several reasons may have prevented the identification of
the physical origin of the shear dominated scaling regime,
Sn�r� / r�S�n�. On the one hand, limitations on the
Reynolds number of present-day DNS hinder the direct
observation of scaling laws. On the other hand, experi-
ments cannot provide the spatial information to distinguish
the contributions of different SO(3) sectors and this, as we
shall see, may lead to an ambiguous physical
interpretation.

The purpose of the present Letter is to address shear
dominated scaling laws in the simplest conditions of a
homogeneous shear flow, see Fig. 1. The combined use
of experimental and numerical data will enable us to ex-
tract the exponents for the isotropic sector to a sufficient
degree of accuracy to claim that their values definitely
differ from those of the inertial subrange.

We address different data sets. The experimental ones
are described in [14]. The others are provided by highly
resolved large eddy simulations (LES) at three different
shear intensities. The LES approach by achieving suffi-
ciently large Reynolds numbers allows for scaling laws in
terms of separation to emerge in a much neater way that
would otherwise be possible by DNS.

Large eddy simulation.—In LES the coarse grained field
�u�x�; t� is related to the fine grained field u�x�; t� via a
spatial filter G with cutoff length � (see details in note [15]
at the end of the Letter and the reference there provided),
Lz � 2!, with L�
x � 1250. Concerning the integral scale L �

q3rms=�, L� � L=� � 1400. In the inset, the same data in
compensated form, Sn=r

�s�n�, same symbols: �s�n� �
0:72; 1:00; 1:23; 1:42; 1:58, for n � 2; 3; 4; 5; 6, respectively,
(For isotropic flows ��n� � 0:69; 1:00; 1:28; 1:54; 1:78).
�u �x�; t� �
Z
G��x� � ~x��u�~x�; t�d3~x: (1)
02450
The flow has the mean profile sketched in Fig. 1 and
periodic initial conditions on the fluctuating field. The
equation for the coarse grained solenoidal field is

@ �u
@t

� �� u�� � @ �!� �@�� �u � S �uy�1 �
@uU
@x

;

(2)

where ! is the sum of pressure and kinetic energy density
and the permutation symbol �� performs the cross prod-
uct between velocity and its curl �.

Equation (2) alone is insufficient to determine �u and a
suitable closure is needed. The approximate deconvolution
method (additional information on the ADM is given in
note [16]; see also the related reference) uses an approxi-
mate inversion of the filter to reconstruct u from �u and
evaluate the unclosed terms �� u�� and uU.

The LES simulation follows the standard, state-of-the-
art numerical procedure devised for the DNS of homoge-
neous turbulence subject to uniform shear [17,18], which
makes use of the remeshing procedure proposed by
Rogallo. In this kind of simulation the global turbulent
kinetic energy is found to manifest large intermittency
cycles. They are not an artifact of the numerical procedure,
as confirmed by their time scales, which are typically
1 order of magnitude larger than the remeshing period.

We emphasize that our LES is actually very close to a
DNS, since the filter cutoff � is always much smaller than
Ls to have the solution virtually unaffected by the model in
3-2
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FIG. 3. Isotropic component of the sixth order longitudinal
structure function normalized by its dimensional scaling,
S�6�00 =r

2. High shear case: circles, parameters defined in the
caption of Fig. 2. Low shear case: triangles, S � 2:2, Re� �
160, L�

s � 430, L� � 1325, L�
x � 1630, �� � �=� � 20.

Intermediate shear case: diamonds, S � 5:4, Re� � 150, L�
s �

110, L� � 1320, L�
x � 1320, �� � �=� � 17. The slope of

the solid lines is �0:42, corresponding to �s�6� � 1:58� 0:08.
For the dashed lines the slope is �0:22, i.e., ��6� � 1:78� 0:08.
In the inset, the local slope (diamonds filled for better read-
ability).
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the production range (precise data are provided in the
figure captions). The resolution is Nx � Ny � Nz � 192�

216� 96, with Stmax ’ 500 and Dt��=�2�1=3 ’ :03.
Scalings in the shear dominated range.—The homoge-

neous shear flow is characterized by two independent
parameters, S � Sq2rms=� and Re� � qrms�=�.
Longitudinal structure functions

Sn�rx� � h�ux�x� rx; y; z� � ux�x; y; z��ni (3)

from simulations and experiments are compared in Fig. 2.
The simulation was designed to reproduce the conditions
of the experiments, as shown in the figure, where in the two
cases—experiments and LES— the structure functions
agree very well. A scaling behavior in terms of separation
is clearly inferred from the plots and confirmed by the
inset. Experiments and numerics provide identical expo-
nents. In comparison, the exponents of isotropic turbulence
are considerably different, see figure caption.

Longitudinal structure functions follow from the super-
position of all the SO(3) sectors [3],

Sn�rx� �
X1
j�0

Xj
m��j

S�n�jm�r�Yjm�0; 0�; (4)

where Yjm�';(� are the spherical harmonics in terms of
polar, ', and azimuthal, (, angles. Here j denotes the
sector, with j � 0 the isotropic contribution independent
of the orientation of the radial vector, and S�n�jm�r� the
components of the structure function in the jth sector.
Because of the strict homogeneity of the flow, the spherical
harmonics provide the natural basis to address the angular
dependence of the structure functions also in the range of
large separations. The same tool could be inappropriate to
deal with the large scales of inhomogeneous flows, such as
boundary layers or channel flows.

In principle, scaling laws in the different sectors with
j-dependent exponents, S�n�jm�r� / r�j�n�, may lead to a
blending of power laws, and to an effective logarithmic
slope in the complete longitudinal structure functions. If
this is the case, the effective slope would strongly depend
on the relative intensity of the different sectors, resulting in
a highly flow dependent feature. We will see below that the
scaling laws emerge in a different way.

In order to ascertain the physical origin of the scalings
reported in Fig. 2 it is appropriate to extract the dominant
contributions from the general SO(3) decomposition. The
interest is naturally focused on the isotropic sector, j � 0.
Unfortunately, experimental data can hardly be used to
cleanly extract the pure isotropic component, S�n�00 �r�, due
to the lack of spatial information. However, this is easily
done on the basis of numerical data, considering that
Y00�';(� 
 1=

�������
4!

p
, so that

S�n�00 �r� �
1�������
4!

p
Z !

0

Z 2!

0
Sn�rx; ry; rz� sin�'�d'd(: (5)
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Results for n � 6, where the difference between the ex-
ponent of the longitudinal structure function—
�s�6� � 1:58—and that of isotropic turbulence—
��6� � 1:78— is particularly large, are reported in Fig. 3.
Here the isotropic contribution S�6�00 �r� is plotted for three
different shear intensities S. The first one, the high shear
case (circles), is the same we have already discussed. It is
clear from the plot that 1.58 (solid line) is the appropriate
exponent to achieve compensation. It is also clear from the
figure that the classical isotropic value of 1.78 (dashed
lines) is unsuitable to fit the data. We conclude that a
pure scaling law with an exponent considerably smaller
than the isotropic one characterizes the isotropic sector of
this shear dominated flow. This exponent is able to fit also
the longitudinal structure functions, as already shown in
Fig. 2. The SO(3) decomposition allows here to exclude
contamination effects from the anisotropic sectors.

The difference between 1.58 and 1.78 represents the
shear-induced alteration of the exponent in the isotropic
sector of the sixth order structure function. Contrary to
expectation, this effect is not a flow dependent superposi-
tion of universal exponents of all sectors, but the modifi-
cation of the exponent of the isotropic sector itself.

As we may expect from the previous analysis, below the
shear scale we recover the isotropic exponents. Going
below Ls while still remaining sufficiently apart from
dissipative effects requires some care in the homogeneous
shear flow. To this purpose we have selected the low shear
case defined in Fig. 3 (triangles) [19,20]. The plots in the
figure are self-explanatory: below the shear scale we ac-
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tually reproduce the results of isotropic turbulence. Ideally,
when the shear scale lays in the middle of the scaling
range, one should observe the simultaneous presence of
the two scaling behaviors. This is what happens indeed in
the third case (diamonds) where the isotropic component
of the sixth order structure function scales with ��6� �
1:78 (dashed line) at small scales and with �s�6� � 1:58 at
large scales. With acceptable precision, the crossover is
found at r � Ls.

Final comments.—In conclusion, we have addressed the
scaling laws for the isotropic component of structure func-
tions in the shear dominated range of the homogeneous
shear flow. The exponents are lower than those of the
classical inertial subrange, in agreement with previous
results for longitudinal structure functions in the produc-
tion range. The aim was to understand the origin of such
alteration. Were it due to contamination from the aniso-
tropic sectors, scaling laws would result as intensity-
dependent superpositions of the exponents of each sector.
The issuing effective exponent would be a strongly flow
dependent feature. We show instead that longitudinal struc-
ture functions change under shear essentially as a conse-
quence of the shear-induced alteration of the isotropic
sector. This gives reason to the experimental observations
that, in the appropriate range of scales, always the same
values of the exponents are reproduced. Actually, all the
data available to us—channel flows, boundary layers at
different distance from the wall, homogeneous shear flows,
and presumably even jets—yield the same exponents we
have produced here. In other words, the production range
of shear flows seems to be characterized by the universal
set of scaling exponents inherited by the isotropic sector
and provided in Fig. 2. In applications such universality is
instrumental for developing proper closures for LES,
which are actually needed since those based on classical
Kolmogorov-like arguments are known to fail close to the
wall.
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