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Flow Reversal in a Simple Dynamical Model of Turbulence
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In this Letter, we study a simple hydrodynamical model showing abrupt flow reversals at random times.
For a suitable range of parameters, we show that the dynamics of flow reversal is accurately described by
stochastic differential equations, where the noise represents the effect of turbulence.
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It has been recently reported [1] that abrupt flow reversal
takes place at a large Rayleigh number in thermal convec-
tion. In addition to thermal convection, flow reversal has
been also observed in laboratory experiment of two dimen-
sional turbulence [2] and in the magnetic polarity of Earth
[3]. More generally, there are many ‘‘turbulent’’ flows for
which transitions between different states have been inves-
tigated, namely, within the theory of multiple equilibria for
atmospheric flows [4] and of long time climatic changes
[5]. In most cases the major question to be answered by
experiments or observations concerns the mechanism re-
sponsible for the transition. This question is highly non-
trivial whenever the average persistent time h�i around
different states is much longer than any characteristic times
describing the dynamical behavior of the system.

There are two main interpretations which have been
suggested so far and pointed out in Refs. [1–6]. The first
one assumes that turbulence is more or less a ‘‘noise’’
applied to the order parameter  which describes the
system (i.e., the wind in the case of Rayleigh-Benard
convection or the temperature in the case of climatic
change). Then, by defining  such that the two observed
states are � 0, the equation for  is given by
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where W is an incremental Wiener process 	 correlated in
time with zero mean and variance dt, while a�1 is the
characteristic time scale of the instability at  � 0. One
can show that transitions between the two stable states
� 0 occur at random times � with an average time h�i
given by
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Hereafter, following the language of stochastic differential
equations, the random time � will be referred to as ‘‘exit
time.’’ Note that Eq. (1) implies, for small �, that the
average exit time h�i is much longer than the deterministic
‘‘fluidodynamical’’ time a�1. Moreover, by employing the
theory of stochastic differential equations [7], one can
compute the probability distribution of the exit time �,
which, for small �, is given by
05=95(2)=024502(4)$23.00 02450
P��	 � h�i�1 exp���=h�i	: (3)

If the above scenario is believed to be correct, then the
transitions between the two states � 0 are due to repeated
small noise perturbations of the same ‘‘sign’’ which are
acting against the deterministic ‘‘force’’; i.e., there is no
specific mechanism introduced by the small scale turbu-
lence (parametrized by the noise) and transitions can be
explained in terms of large deviation theory.

One of the major criticisms against the above interpre-
tation is that the noise is by itself the effect of turbulence
and, in most cases, there is no time scale separation be-
tween the dynamic fluctuations of  and turbulent fluctua-
tions. Thus one cannot assume that ‘‘the noise’’ is a ‘‘fast’’
perturbation with respect to the dynamics of  and, as a
consequence, Eq. (1) cannot be justified. As an alternative,
one should look for a specific fluidodynamical large scale
mechanism which can explain the observed transitions. For
instance, for the wind reversal in thermal convection, there
has been a recent proposal by [6] which explains transi-
tions as the result of plume dynamics.

In this Letter we want to understand whether and how
Eq. (1) can be justified, at least in the simplest possible
model of a turbulent flow. For this purpose we shall con-
sider an ‘‘energy cascade’’ model, i.e., a shell model aimed
at reproducing few of the relevant characteristic features of
the statistical properties of the Navier-Stokes equations
[8,9]. In a shell models, the basic variables describing the
‘‘velocity field’’ at scale rn � 2�nr0  k�1

n , is a complex
number un satisfying a suitable set of nonlinear equations.
There are many version of shell models which have been
introduced in literature. Here we choose the one referred to
as the Sabra [10] shell model:

dun
dt

� ikn�a�u�n�1un�2 � bu�n�1un�1 � c��1un�2un�1�

� �k2nun � fn (4)

where � � 2, a � 1, and c � �1� b	 and fn is an external
forcing. Let us remark that the statistical properties of
intermittent fluctuations, computed either using un or the
instantaneous rate of energy dissipation, are in close quali-
tative and quantitative agreement with those measured in
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laboratory experiments, for homogeneous and isotropic
turbulence [10].

The basic idea of our approach is to assume that Ur 
real�u1	 describes the one dimensional unstable manifold
arising by a (large scale) pitchfork bifurcation.
Consequently we change the equation for u1 as follows:

du1
dt

� ���u1

�
1�

u21
u20

�
� �k21u1; (5)

dun
dt

� ikn�a�u
�
n�1un�2 � bu�n�1un�1 � c��1un�2un�1�

� �k2nun:�n > 1	; (6)

where �  ik1a�u2u�3. Let us comment on Eq. (5). In
most cases, a pitchfork bifurcation, as described by Eq. (5),
is observed in real fluidodyanamical flows with respect to
the external forcing or the Reynolds number. In our case we
are assuming that the unstable manifold is coupled to
smaller scales by the term ik1a�u

�
2u3. For small �, the

two states u1 � �u0 become unstable and a turbulent
regime is observed. In the following we will think of
Eq. (5) as a realistic, although approximate, equation de-
scribing a simplified turbulent ‘‘flow’’ superimposed to a
large scale instability. As one can see, no external noise is
introduced in the system. We remark that Eqs. (5) and (6)
are invariant under the transformation (u3m�1, u3m�2,
u3m�3) with ( � u3m�1, �u3m�2, u3m�3) (m �
0; 1; 2; . . . ), which implies that the probability distribution
for u1 is symmetric. Using dimensionless variables Wn �
un=u0, Kn � knL, and t0 � �t (L  k�1

1 ), one gets

dW1

dt0
� i
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�L
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1 	 �
�

�L2K
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(7)
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FIG. 1. The velocity Ur plotted as a function of time as
obtained by numerical simulation of Eq. (5) for u0 � 2, � �
1, and � � 10�6. Inset: Ur as a function of time for u0 � 1; the
other parameters kept constant.
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2
nWnn > 1: (8)

Equation (7) tells us that the dynamical behavior of un
depends on two dimensionless numbers, namely, the
Reynolds number Re  u0L=� and the number B 
u0=��L	. We will investigate the statistical properties of
Eq. (5) and (6) for Re � 1 and for different values of B. In
particular we fix � � 1 and u0 real, while the parameters
of the model are a � 1, b � �0:4, c � 0:6.

In Fig. 1 we show Ur as a function of time for � � 10�6

and B � 1 (u0 � 2), while in the insert of the same figure
we plot Ur for B � 2. (u0 � 2). As one can see, abrupt
reversals of Ur are observed at apparently random times in
both cases. The most important feature of Fig. 1 is that the
characteristic correlation time of Ur is of order 1 (i.e., it is
of order L=u0 
 1), much smaller than the exit time h�i.
The behavior shown in Fig. 1 does not change by increas-
ing the Reynolds number.

A more refined numerical simulation shows that the
‘‘random’’ exit times � are distributed according to
Eq. (3) with h�i 
 600 and h�i 
 65 for B � 1 and B �
2, respectively. In the insert of Fig. 2 we show logP��	
versus � for the case B � 2, where the line shown in the
figure represents the quantity exp���=65	. We want to
remark that the dynamics of Ur cannot be considered
slow with respect to the characteristic time scale of u2
and u3. More precisely, let us consider the correlation
functions of un. Cn�T	  hreal�un�t� T	�real�u�t	�i. In
Fig. 2 we show Cn�T	 for n � 1; 2; 3 for B � 1, computed
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FIG. 2. The correlation functions Cn�T	  hreal�un�t�
T	�real�un�t	�i plotted as a function of T for n � 1 (solid line),
n � 2 (X), n � 3 (dotted line with �), and B � 1. The curve
with squares shows the correlation function C��T	. Inset:
log�P��	� as a function of � as obtained by numerical simulations
of (5) for u0 � 2. According to the theory of stochastic differ-
ential equations, P��	 is exp���=h�i	 where h�i is the average
exit time. The solid line in the figure shows exp���=65	, which
is an extremely good fit to the observed P��	.
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by (ensemble) averaging when the system is near one of the
two states; i.e., no reversal is included in the average. As
one can clearly see, the characteristic time scales of u2 and
u3 are similar to the characteristic time scale of u1. Also,
we can compute the correlation function of C��T	 
hreal���t� T	�real���t	�i of the nonlinear terms in
Eq. (5). It is shown in Fig. 2 that the C��T	 is decaying
with a correlation time similar to those observed for C1�T	
Thus, the nonlinear term in Eq. (5) cannot be considered a
fast variable with respect to u1. The same results hold for
B � 2. For larger values of u0, the average exit time h�i
becomes smaller and eventually, for u0 
 10 it becomes of
order 1 (see also the discussion below). Our interest will
focus on values of u0 in the range [1,2] where h�i is at least
2 orders of magnitude longer than ��1 and L=u0, the two
relevant deterministic time scales of Eq. (5). A closer look
at Figs. 1 and 2 reveals that the two states of Ur are not
�u0. For B � 1, the maxima �UM in the probability
distribution of Ur are located at UM � 0:84, while for B �
2 we find UM � 1:5, represented as horizontal lines in
Fig. 2. In order to explain these results, let us consider
more carefully the physical meaning of � in Eq. (5). The
quantity real��u�1	 is the amount of energy transferred by
mode u1 to smaller scales, i.e., u2 and u3. On the average,
we know that realh��u�1	i  �! < 0, where ! is the aver-
age rate of energy dissipation. Thus, as a first approxima-
tion, we can assume that

� � �#u1 �$0 (9)

where h$0u�1i � 0 and #> 0. Equation (9) is consistent
with the theory proposed in [11] and it should be consid-
ered in a statistical sense as the following discussion
clarifies. In Fig. 3 we show the correlation functions
Cn�T	, C��T	 and C$0 �T	  hreal�$0�t� T	�real�$0�t	�i,
all of them computed by including in the (ensemble)
average flow reversals. C2�T	, C3�T	, and C$0 �T	 decay
quite rapidly with a correlation time of order 1. On the
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FIG. 3. The correlation functions C1�T	 (squares) C��T	 (lines
with �), and C$0 �T	(solid line) as a function of T Inset: the
correlation function of C2�T	 and C3�T	.
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other hand, C1�T	 and C��T	 decay rather slowly with a
correlation time of order h�i, i.e., ��t	 is correlated as u1�t	
while $0�t	 is a fast variable with respect to both � and u1.
Note that there is no contradiction between the results
shown in Figs. 2 and 3. When we observe the system
around one of the two states and for a time interval not
including flow reversals, all the large scale variables (u1,
u2, u3, and �) have almost the same correlation time.
When we observe the system over a long time scale in-
cluding flow reversals, the average exit time h�i determines
the correlation time of u1 and � and the other large scale
variables can be considered to be fast variables. Figure 3
shows that Eq. (9) correctly tells us which are the slow
components of �, namely �#u1, and the fast components,
i.e., $0. Finally, let us remark that the time scale separa-
tions shown in Fig. 3 emerge spontaneously in the system
as the result of the nonlinear energy flux from large to
small scales.

By multiplying both sides by u�1 and taking the time
average, we can compute # as

# � real�h�u�1i	=hju1j
2i: (10)

Thus, we must expect that two maxima in the probability
distribution of Ur should corresponds to the solution of the
equation

�
�� �k21 �

!

hju1j2i

�
Ur �

�

u20
U3
r � 0: (11)

Equation (11) tells us two important facts. First, the
‘‘states’’ �UM, (between which abrupt transitions are ob-
served) are not stationary solutions of the deterministic
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FIG. 4. Computing the statistically stationary solutions for Ur.

The line corresponds to u0
������������������������������������
�� #�u0	 � �k21

q
, where #�u0	 is

defined by Eq. (10). The symbols represent the value of the
maxima UM of the probability density function of Ur obtained
by the numerical simulations of (5) for different values of u0.
Insert: plot of �	U (symbols) and �� (solid line) for different
values of u0. �� is the noise computed by Eq. (13) while �	U is
the noise computed from the fluctuations of Ur near the statis-
tically stationary states, see Eq. (14).
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Eq. (5), rather the states should be considered as statisti-
cally stationary states of the system. Second, we must
expect UM < u0 as far as an energy cascade, ! > 0, is
produced. We have carefully checked the validity of
Eq. (11) for u0 in the range [1,2]. We have computed #
from numerical simulations according to Eq. (10). It turns
out that the numerical values of # are extremely well
represented by the function #�u0	 � 0:15� 0:14u0.
Next, we have solved Eq. (11) for each value of u0 and
#�u0	 getting the line represented in Fig. 4. Finally we have
computed the value of UM using the probability distribu-
tion of Ur as obtained by the numerical simulations of the
model. The results are shown as symbols in Fig. 4: the
agreement is excellent. In light of the above results, it is
tempting to argue that the behavior of (5) is consistent with
the stochastic differential equation

du1 �
�
��� #�u0	�u1 ��u1

u21
u20

�
dt�

����
�

p
dW�t	 (12)

for a suitable value of the noise variance � (hereafter we
shall neglect the very small term �k21). Note that we are
claiming the validity of (12) over a time scale of order h�i.
Using (9) and (5), the quantity

����
�

p
dW�t	 represents the

deterministic term $0�t	dt. In order to validate (12), we
need to check whether the observed fluctuations of u1 are
in agreement with the average exit time h�i. More specifi-
cally, using (12) and (2) we have

h�i �

���

2
p

��� #	
exp���� #	2u20=2���: (13)

By the numerical value of h�i and#, we can compute the
intensity of the noise �, hereafter denoted by ��, needed to
explain the average exit time obtained by the numerical
simulations. The crucial point is whether the observed
fluctuations ofUr near one the two states are ‘‘compatible’’
with the noise intensity ��. To answer this question, let 	U
be small deviation around the statistically stationary states.
Using (12) we can compute h�	U	2i as

h�	U	2i �
�

4��� #	
: (14)

By using the numerical simulations, we can estimate
h�	U	2i around the statistically stationary states. Finally,
using (14), we can estimate the noise variance �, hereafter
referred to as �	U, which explains the observed fluctua-
tions of 	U. For Eq. (12) to represent a good approxima-
tion of the full nonlinear deterministic system, we must
obtain

�	U 
 ��: (15)

In the inset of Fig. 4, we plot �� (line) and �	U (crosses)
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for different values of u0 in the range [1,2]. As one can see,
(15) is verified with very good accuracy, with at most 10
percent difference for u0 � 2. We remark that the result
shown in Fig. 4 represents a rather severe test on the
validity of Eq. (12).

We want finally to comment on the behavior of the
model in the limit of large u0 or, equivalently, in the limit
of large B. For large value of u0 we reach the condition
#�u0	 
�. Actually, arguments based on energy balance
and numerical simulations clearly show that the maximum
value of# is 1. In this case, Eq. (11) givesUM 
 0, i.e., the
two ‘‘statistically stationary states’’ disappear. Also, the
quantity h�i��� #�u0	� becomes order 1 for large u0 and
the there is no time scale separation between the average
exit times and the eddy turnover time of the system. It
follows that, for large B, one cannot speak of ‘‘abrupt flow
reversal.’’

To our knowledge, the results shown in this Letter
clearly demonstrate, for the first time, that Eq. (1) can be
regarded as a very good approximation for the long time
(large deviation) dynamics of a deterministic dynamical
system. We argue that some of the experimental results
mentioned in the introduction can be investigated and
explained in the framework of stochastic differential equa-
tions even if no time scale separation exists between the
‘‘wind’’ fluctuations and turbulence.
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