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Soliton as Strange Attractor: Nonlinear Synchronization and Chaos
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We show that dissipative solitons can have dynamics similar to that of a strange attractor in low-
dimensional systems. Using a model of a passively mode-locked fiber laser as an example, we show that
soliton pulsations with periods equal to several round-trips of the cavity can be chaotic, even though they
are synchronized with the round-trip time. The chaotic part of this motion is quantified using a two-
dimensional map and estimating the Lyapunov exponent. We found a specific route to chaotic motion that
occurs through the creation, increase, and overlap of ‘‘islands’’ of chaos rather than through multiplication
of frequencies.
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Solitons are usually considered to be stable self-
localized objects that do not show any chaotic behavior.
This is true for solitons in integrable systems, but is cer-
tainly not the case for solitons in dissipative systems.
Dissipative solitons exist in various physical arrangements
[1] including binary liquids, all-optical transmission lines,
and chemical reactions. As an example of an optical sys-
tem generating chaotic dissipative solitons, we consider a
laser with passive mode locking.

Passively mode-locked lasers producing ultrashort
pulses can operate in a regime of period multiplication
[2–6]. This occurs when the pulse does not recover its
shape after traveling exactly one round-trip, but it can do so
after several round-trips. Solitons can acquire additional
pulsations with a period that differs from the round-trip
time. In particular, period 2 pulsations have been observed
in a solid state laser [3]. Periods 2, 3, and 6 have been
observed in a nonlinear fiber ring resonator [7]. Much
longer periods of pulsations (up to a few hundred round-
trips) have been observed in a passively mode-locked fiber
laser [8]. When the period of the pulsations is just a few
round-trips of the cavity, it can easily be synchronized with
the round-trip time, although elements of chaotic behavior
may be present [9]. On the other hand, when the period of
pulsations is much longer than the round-trip time, these
chaotic behaviors can dominate.

This synchronization occurs for parameters of the sys-
tem located in small windows of the parameter space.
There are several of these windows with synchronization
number N (the number of round-trips in the additional
period of the pulsations), varying from 2 (period-doubling)
to hundreds and thousands of round-trips. Beyond those
windows, we can find chaotic behavior of the solitons. Our
main interest in this work is the soliton dynamics at the
edges of these windows, i.e., the transition from synchro-
nization to chaotic behavior. In particular, we show that the
synchronization of the pulsation period with the round-trip
time can occur but it can also be supplemented with chaotic
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dynamics. The chaotic part of the dynamics forces the
soliton to behave like a strange attractor in low- dimen-
sional systems. The conjecture that a dissipative soliton
can behave as a strange attractor was proposed in Ref. [10].
In the present work, we confirm this conjecture quantita-
tively using the laser model analyzed in Ref. [8].

We model a fiber laser using the cubic-quintic complex
Ginzburg-Landau equation (CGLE) [11] with parameter
management:

i z �
D
2
 tt � j j2 � �j j4 

� i� � i	j j2 � i
 tt � i�j j4 ; (1)

where z is the distance that the pulse travels in the cavity, t
is the retarded time,  is the normalized envelope of the
field,D is the group velocity dispersion coefficient, � is the
linear gain-loss coefficient, i
 tt accounts for spectral
filtering (
> 0), 	j j2 represents the nonlinear gain
which arises from saturable absorption, the term with �
represents, if negative, the saturation of the nonlinear gain,
while the one with � corresponds, also if negative, to the
saturation of the nonlinear refractive index.

The laser cavity consists of several pieces of fiber, con-
necting the different elements and the mode-locking de-
vice. The properties of the media where the pulse
propagates vary with the distance. Hence, the coefficients
in Eq. (1) must be periodic functions of the distance z. We
take the coefficients in the equation (1) to be periodic
stepwise functions of z. Each period naturally describes
one round-trip of the optical pulse. The model is illustrated
in the inset of Fig. 1. It is the same as in Ref. [8]. The
section of the erbium-doped fiber, together with the passive
mode-locking element, is modeled by the full CGLE equa-
tion, where all the equation parameters generally differ
from zero (see the left-hand-side box of this figure). The
dispersion in this section of the cavity is taken to be normal
(D< 0) and the length of the section is LD. The single-
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FIG. 2. Part of the bifurcation diagram in Fig. 1 that shows
synchronization (entrainment) and transition to chaos.

FIG. 1. Bifurcation diagram showing the period-tripling bifur-
cation with an additional long-period pulsation. The inset shows
the laser model used in the numerical simulations.
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mode fiber with anomalous dispersion (D � d > 0) is
modeled by the same equation with only the dispersive
term taken into account (the right-hand-side box of this
figure). The length of this fiber is denoted by Ld. The
equation in this part is linear, and therefore the only
relevant parameter is the product (dLd). The Kerr nonline-
arity of the fiber is assumed to be negligible in comparison
with the nonlinear response of the ‘‘mode locker’’ in the
system. The pulse profile is monitored once every round-
trip at the end of this section. As output data, we use the
soliton amplitude A and calculate the pulse energy Q �R
j j2dt. These are functions of the system parameters, and

they usually take the form of bifurcations rather than
smooth curves. When the pulse profile changes from one
round-trip to another, these functions additionally become
multivalued.

Figure 1 shows an example of a bifurcation diagram
taken from Ref. [8]. The figure represents the obtained
output values of the pulse energy, Q, as a function of the
dispersion parameter D, after any transitory behavior has
been removed. It shows the transition from a single period
to a period 3 solution. Specifically, the period one can be
seen clearly in the region below D � �1:32. The period 3
solution exists in the interval �1:05<D<�0:92. In
between these two regimes, we can see a wide area of
soliton evolution with a continuous range of allowed values
for Q. This area corresponds to the quasiperiodic soliton
evolution with an additional period involved in its dynam-
ics. This additional period is not exactly a multiple of the
round-trip time, thus creating in Fig. 1 the region with a
continuous interval of energies. The period changes from
N being infinite at D � �1:32 to N � 3 at D � �1:06.
The amplitude of the long-period modulation changes from
zero on the left-hand side to its maximum value on the
right-hand side of this interval.
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When an additional period appears, it is, generally,
incommensurate with the round-trip time. However, for
some range of parameters, the ‘‘synchronization’’ (or en-
trainment) of two frequencies can occur. Then, a period
which is an integer multiple of the round-trip time can be
observed. A clear example of such synchronization is the
period 3 solution in the interval �1:06<D<�0:92.
Another example can be seen in Fig. 1 in a small window
in the region �1:2<D<�1:19. The soliton energy takes
discrete values rather than arbitrary values from the con-
tinuous range. This can be seen clearly if we plot the same
figure with a higher resolution in D (see Fig. 2). The
solution for D around �1:195 has 19 fixed values of
energy. Three other zones with discrete values of the
energy can be seen in this figure for D equal to
� �1:175, � �1:152, and � �1:128, with periods 16,
13, and 10 round-trips, respectively. These three windows
have similar structures with chaotic motion at their
boundaries.

The question arises whether the motion in these regions
is a regular two-period oscillation of the soliton parameters
or chaotic dynamics. The presence of the sequence of
period-doubling bifurcations for D below approximately
�1:191 indicates that the motion may be chaotic, at least
just above this point. At the same time there could be
elements of synchronization and chaos simultaneously. In
order to find out, we studied the soliton dynamics on the
right-hand side of the window with period equal to ten
round-trips, namely, at D � �1:127. In contrast to what
happens on the left-hand side part of this window, the
motion here is not an exact period ten solution. A given
value of the soliton energy Q does not return to the same
value after ten round-trips. It slightly changes each time,
creating a small band of admissible values. The size of
these bands increases from being a point (which corre-
sponds to a fixed point of the dynamical system) on the
left-hand-side part of the window to a finite-size band on
the right-hand-side part. These bands are nothing else but
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islands of chaotic motion. As a result, we still have the
period ten solution, but with some amount of chaotic
dynamics. Synchronization occurs, but it is accompanied
by a chaotic component of the motion.

Thus, at the value D � �1:127, the pulse enters a
regime of ‘‘chaotic resonance.’’ We have now a period
ten motion but the pulse parameters ‘‘jitter.’’ Instead of
fixed values, we have a band for each tenth round-trip. In
order to show that these bands are islands of chaos within
the regular synchronized motion, we constructed a one-
dimensional Poincaré map of this motion. Figure 3 shows
the energyQ of the pulse after ten round-trips as a function
of Q before them. The ten bands of values of Q, corre-
sponding to every tenth round-trip, are clearly seen. Two
pairs of bands [labeled (6, 7) and (5, 9)] in the intervals
29:5<Q< 33 and 40<Q< 42 overlap in energy, but
they are distinctively different on the map.

All bands are located close to the diagonal line of the
plot. This occurs due to the fact that each tenth iteration
returns the point to the same band. The numbers next to the
curves indicate the relative order in which the nearest
iterations follow each other. The plot reveals a certain
structure of these bands resembling ten separate horseshoe
curves. A magnified image of one of the bands (the one
labeled 3 in Fig. 3) is shown in the inset of this figure. All
the other bands have similar structures. We can see this by
comparing the curve in the inset with the largest bands 6
and 7 in Fig. 3. At first glance, each band could be inter-
preted as a noninvertible (logistic-type) map. This map is
known to result in chaotic motion [12]. If we approximate
the curve in the inset in Fig. 3 with a single parabola it will
FIG. 3. One-dimensional map for partially synchronized pe-
riod 10 pulsations. The inset presents a magnified image of the
third band. It shows the fine structure of the band which has a
shape of a double horseshoe. Other bands have similar substruc-
ture.
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give chaotic motion. In reality, the map has a more com-
plicated structure than just an inverted parabolic shape.

The curve in the inset in Fig. 3 has two branches of
almost parabolic shape located very close to each other.
Each successive iteration of this map may appear on either
of the two branches, independently of where it started.
Transitions between the two branches are unpredictable,
showing that the approximation by a one-dimensional map
is inadequate for a description of the motion. Therefore, we
are faced with the necessity of constructing at least a two-
dimensional map. To construct such a map, we choose the
soliton amplitude A as the second variable. Similar results
are obtained for any other soliton parameter that can be
calculated uniquely.

Figure 4 shows the two-dimensional map of the varia-
bles (Q, A) calculated for the same band 3. The two insets
show successive magnifications of small parts of the map
that allow us to resolve the fine details of the curves. The
lines have a fractal structure similar to that obtained for the
Hénon map [12]. This is one of the features of the chaotic
behavior of the trajectories inside a strange attractor. We
can conclude that solitons in our model behave as strange
attractors at some values of the parameters. We conjectured
this in our earlier work [10], and now we show that the
conjecture was true.

In order to further show that the motion is chaotic, we
have to show that any two initially-nearby trajectories
diverge in the phase space. This can be done if we choose
some parameter of the motion that approximates the sepa-
ration between the trajectories in an infinite-dimensional
phase space and show that it increases. As such parameter,
we can take the separation between two nearby points on
the two-dimensional map in Fig. 4. Namely, we define the
separation according to the formula

SI;J �
����������������������������������������������������
�QI �QJ�

2 � �AI � AJ�
2

q
; (2)
FIG. 4. Two-dimensional (soliton energy Q vs soliton ampli-
tude A) map of period-10 pulsations. Two consecutive magnifi-
cations, indicated by arrows, show the fractal structure of the
map. The magnification factor is written on the arrows.
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FIG. 5. Lyapunov exponents L calculated for 15000 pairs of
points in the two-dimensional map (A, Q) using Eq. (4).
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where indices I and J attribute the parameters to two
different points of the map.

The separation will change during the evolution, and it
depends on the number of round-trips n made by the pulse
in the cavity, so SI;J � SI;J�n�. Let us suppose that this
separation changes exponentially with n:

SI;J�n� � SI;J�0� exp�10LN�; (3)

where SI;J�0� is the initial separation, SI;J�n� is the sepa-
ration after n � 10N round-trips, and L is the Lyapunov
exponent. The factor 10 in the exponential function ap-
pears because we consider data after every ten round-trips.
The initial separation, SI;J�0�, has to be chosen small
enough in order for the approximation (3) to be valid.

The motion can be considered chaotic when the
Lyapunov exponent is positive. If we know the initial
separation, SI;J�0�, and the separation after ten round-trips,
the Lyapunov exponent can be calculated as (N � 1)

L �
1

10
log

�
SI;J�10�
SI;J�0�

�
: (4)

For the pairs of points �I; J� in Fig. 4 that satisfy the
condition SI;J�0�< 5� 10�8, we calculate the separation
SI;J�10� and apply Eq. (4) to find the Lyapunov exponent.
The results of the calculation of L for 15000 different pairs
of points inside the band in Fig. 4 are shown in Fig. 5. The
scattering of data in Fig. 5 is related to the fact that we have
replaced the real separation in an infinite-dimensional
phase space by the two-dimensional approximation (2).
The average value of L calculated from these data is
positive and equals to 0.13, which shows that the motion
is indeed chaotic. The clearly visible dense stripes in Fig. 5
appear due to the fractal structure of the bands.

A further increase of D above �1:267 results in com-
pletely chaotic behavior. The sizes of the islands of chaos
increase until they merge. Consecutive iterations no longer
bring the point in Fig. 3 back to the same band after a fixed
number of round-trips. The elements of synchronization
disappear. Strange attractors of smaller size merge into a
larger one. This is an example of a route to chaos which is
different from the classic period-doubling sequence of
bifurcations. The fixed points of purely periodic motion
are first transformed into small islands of chaotic motion.
The size of these islands increases until they all merge. The
global chaotic solution appears as a result of the overlap
between these islands of partially chaotic motion, rather
than being due to a multiplication of frequencies. The
choice of D as a variable in our simulations does not limit
its generality. Similar transition into chaotic regime can be
observed when we move in other directions in the multi-
dimensional space of the system parameters in the vicinity
of the same point.

In conclusion, we revealed chaotic dynamics of solitons
in dissipative systems. We have shown that solitons gen-
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erated by passively mode-locked lasers can contain ele-
ments of chaotic dynamics similar to that of a strange
attractor in low-dimensional systems.
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