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Resonant Light Scattering by Optical Solitons
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We consider the process of light scattering by optical solitons in a planar waveguide with homogeneous
and inhomogeneous refractive index cores. We observe resonant reflection (Fano resonances) as well as
resonant transmission of light by optical solitons. All resonant effects can be controlled in experiment by
changing the soliton intensity.
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FIG. 1. Schematic structure of the experimental setup. The
soliton beam is sent along the z axis, while the probe beam
propagates in the xz plane at some angle to the soliton.
Recently the problem of plane wave scattering by vari-
ous time-periodic potentials has attracted much attention,
as it has been shown that some interesting effects such as
resonant reflection of waves [1] can be observed when
dealing with nonstationary scattering centers. These reso-
nant reflection effects were demonstrated to be similar to
the well-known Fano resonance [2] for some nonlinear
systems [3]. In one-dimensional (1D) systems they can
lead to the total resonant reflection of waves. The time-
periodic scattering centers can originate from the presence
of nonlinearity in a spatially homogeneous system [4]. The
main underlying idea of this phenomenon is that a non-
linear time-periodic scattering potential induces several
harmonics. In general, these harmonics can be either inside
or outside the plane wave spectrum, ‘‘open’’ and ‘‘closed’’
channels, respectively [3]. The presence of closed channels
is equivalent to a local increase of the spatial dimension-
ality, i.e., to the appearance of alternative paths for the
plane wave to propagate. This can lead to novel interfer-
ence effects, such as the resonant reflection of waves—
Fano resonance in nonlinear systems.

Here we emphasize that the total resonant reflection of
plane waves can be similarly arranged by means of a static
scattering center, provided the system dimensionality has
been artificially locally increased (e.g., in composite ma-
terials) [5]. However, such static configurations have at
least two significant disadvantages. Firstly, they do not
provide any flexibility in tuning the resonance parameters:
the resonant values of plane wave parameters are fixed by
the specific geometry. Secondly, it may be a nontrivial
technological task to introduce locally additional degrees
of freedom for plane waves in the otherwise 1D system.
Time-periodic scattering potentials appear to be much
more promising: they can be relatively easily generated
(e.g., laser beams, microwave radiation, localized soliton-
like excitations), and they provide us with an opportunity
to tune the resonance, since all the resonant parameters are
depending on the parameters of the potential (e.g., ampli-
tude, frequency) and thus can be ‘‘dynamically’’ controlled
by some parameter, e.g., the laser beam intensity.
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In this Letter we demonstrate a possibility of experi-
mental observation of Fano resonances in the scattering
process of light by optical spatial solitons. The soliton is
generated in a planar (slab) waveguide by a laser beam
injected into the slab along the z direction; see Fig. 1. The
soliton beam light is confined in the y direction (inside the
core layer) by the total internal reflection. The localization
of light in the x direction (the spatial soliton propagates
along the z direction) is ensured by the balance between
linear diffraction and an instantaneous Kerr-type nonline-
arity. The probe beam is sent at some angle to the soliton. It
has small enough amplitude so that the Kerr nonlinearity of
the medium is negligible outside the soliton core. It is
important to note that the process of light scattering by a
spatial soliton is assumed to be stationary in time; i.e., the
light is quasimonochromatic. The analogy with the above
time-periodic scattering problems comes from the possi-
bility to interpret the spatial propagation along the z direc-
tion as an artificial time [6,7]. Thus the angle at which the
probe beam is sent to z axis plays the role of a parameter
similar to the frequency (or wave number) of plane waves
in 1D systems.

In addition we allow the refractive index n inside the
slab to be a stepwise function of the coordinate x in a finite
region, where the soliton is located, and n�x� � n0 else-
where. The modulation of the refractive index can be
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achieved by means of well-established techniques of pro-
ducing waveguide arrays: either by etching the surface of
the waveguide [8], or by inserting stripes of another mate-
rial into the slab [9].

Assuming that the electromagnetic field maintains its
linear polarization, the stationary Maxwell equation for the
Fourier component of the electric field E�x; z� [10] takes
the following form [11]:

@2E

@z2
�
@2E

@x2
� n2�x�E� 	jEj2E � 0; (1)

where 	> 0 is the nonlinear Kerr coefficient, the electro-
magnetic field is considered to be monochromatic
E�x; z; t� � E�x; z� exp��i!t� � c:c:, and the dimension-
less spatial coordinates are used: !=c � 1, with c being
speed of light in vacuum.

A spatial optical soliton represents a special class of
solutions of Eq. (1) of the form Esol�x; z� � C�x��
exp�i�z� with C�x� describing the exponentially localized
profile of the soliton, C�x�jx!
1 ! 0. � is the only soliton
parameter (z component of its wave vector), �> n0. The
soliton envelope function C�x� satisfies the stationary non-
linear Schrödinger equation (NLS):

d2C

dx2
� �n2�x� � �2
C� 	jCj2C � 0; (2)

The probe beam light interacts with the optical soliton,
so that the total electric field is a sum of two contributions,
E�x; z� � L�x; z� � C�x� exp�i�z�, both ideally having the
same frequency !. Treating the probe beam part L as a
small perturbation to the soliton part C allows for a linea-
rization of Eq. (1) around the soliton solution, so that we
obtain:

@2L

@z2
�
@2L

@x2
� n2�x�L� 	�2jCj2L��L�C2ei2�z
 � 0:

(3)

The soliton acts as an external potential for the linear
beam, consisting of a ‘‘dc’’ (�jCj2) and ‘‘ac’’ (�C2) parts.
While the former is the soliton induced nonlinear refractive
index modulation, the latter is the result of a coherent
interaction between the beams. Thus, the ratio of ac-dc
components depends on the coherence level between the
soliton and the probe beam, which can be controlled in
experiment, e.g., by a slight beam frequency detuning or by
changing the spatial correlation length between them. The
effective parameter � (0 � � � 1) accounts for this pos-
sible decoherence between the beams.

The soliton part is negligible, C�x� ! 0, outside the
scattering center and the refractive index is constant
n�x� � n0. Then Eq. (3) reduces to the simple wave equa-
tion for plane waves L�x; z� � exp�ikxx� ikzz� with the
dispersion relation:

k2x � k2z � n20: (4)
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Both the modulation of the refractive index and the
soliton (the dc part of the corresponding potential to be
more precise) can result in bound states for the probe light
with the wave vector components (kx; kz) lying outside the
spectrum (4). Besides, the soliton acts as a harmonic
generator (via its ac part), so that the general solution of
the Eq. (3) consists of two ‘‘harmonics’’ (two channels):

L�x; z� � A�x� exp�ikzz
 � B�x� exp�i�2�� kz�z
; (5)

coupled to each other via the ac part of the soliton scatter-
ing potential [3]:

A00 � �k2z � n2�x�
A� 	�2jCj2A��B�C2
; (6)

B00 � ��2��kz�2�n2�x�
B�	�2jCj2B��A�C2
: (7)

For zero coherence parameter, � � 0, the equation for the
A�B� channel is equivalent to the stationary Schrödinger
equation for an effective particle with the energy EA �
n20 � k2z [EB � n20 � �2�� kz�

2] in the external potential
being the sum of ‘‘geometrical’’ and ‘‘soliton’’ parts:
Veff�x� � �n20 � n2�x�
 � 2	jC�x�j2.

We chose 0 � kz � n0, so that it satisfies the dispersion
relation (4) with a real kx value and the probe beam wave
can freely propagate far away from the scattering center.
Thus the z component of the wave vector in the second
term in (5) 2�� kz is outside the spectrum (4). This term
corresponds to a closed channel with amplitude exponen-
tially decaying with the increasing distance from the scat-
tering center. Hence, we have one open (A) and one closed
(B) channel in our scattering problem.

There is a limiting case when we can predict the position
of a Fano resonance. It corresponds to a small coupling
between the two channels provided by the ac scattering
potential. Then the Fano resonance is located at the reso-
nance between the discrete part of the closed channel
spectrum (localized states) and the continuum part of the
open channel spectrum (delocalized states). We take ad-
vantage of this limit by choosing the coherence parameter
� to be small, �! 0 (incoherent interaction). We will use
this limit as the starting point to catch the resonance and to
follow it while increasing the ac potential strength to its
proper value for the coherent interaction, �! 1. By sub-
sequently increasing the coupling between the open and
closed channels, we strongly affect the position of local-
ized levels in spectra of these channels. Therefore even a
weak modulation of the refractive index n, which also
affects the positions of localized levels, might play an
important role in the process of light scattering by optical
solitons.

To compute the transmission coefficient T�kx� we
solve Eqs. (6) and (7), with the boundary conditions [3]:
A�x! �1� � � exp�ikxx�, A�x! �1� � exp�ikxx� �
� exp��ikxx�, B�x! �1� � F exp���x�, B�x!
�1� � D exp��x�. Amplitudes of transmitted, �, and re-
flected, �, waves in the open channel define the trans-
1-2
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mission and reflection coefficients: T � j�j2 � 1�
j�j2 � 1� R, respectively. Amplitudes F and D describe
spatially exponentially decaying closed channel excita-
tions with the inverse localization length � � �4�2 �

4�
����������������
n20 � k2x

q
� k2x


0:5.
In the simplest case of a homogeneous planar waveguide

core n�x� � n0 � const C�x� is the well-known stationary
NLS soliton [6]:

C�x� �

�����������������������
2��2 � n20�

	

s
1

cosh�
�����������������
�2 � n20

q
x

: (8)

All resonance effects are suppressed in the fully coherent
case (� � 1) due to the transparency of the NLS soliton
[6] (see Fig. 2) even though the resonance condition de-
scribed above can be formally satisfied for the soliton
parameter � lying in the interval 1<�=n0 & 1:5.
However, at small � we observe the Fano resonance at
wave numbers kx close to the predicted position in the limit
of a small interchannel coupling (dependent on the soliton
parameter �); see Fig. 2. Increasing coherency� leads to a
shift of the resonance position towards the band edge kx �
0 (this limiting value corresponds to the ‘‘probe’’ beam
being sent along the z axis, i.e., parallel to the soliton).
Finally, when the soliton and the probe beam are coherent
(� � 1), we lose the resonance completely and the soliton
becomes transparent (T � 1).

In order to observe Fano resonances for coherent beams
we consider a nonhomogeneous refractive index n�x�.
Introducing modulation of the refractive index, the soliton
is no longer transparent for the probe beam. However, this
does not automatically guarantee appearance of reso-
nances, thus specific core configurations must be designed.
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FIG. 2. Transmission coefficient T�kx� of the probe beam
through the optical soliton with � � 1:4743, �2 � n20 � 0:1,
in the case of a homogeneous core of the planar waveguide
with n0 � 1:44 (solid black line). The dashed and solid gray
lines indicate the transmission coefficient for the same system
but for partially decoherent beams with � � 0:1 and � � 0:5,
respectively.
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We propose here a triple well (TW) configuration of the
planar waveguide core, which allows one to observe the
Fano resonance effect in light scattering by an optical
soliton. The refractive index n�x� inside the core is locally
decreased in the vicinity of the scattering center (i.e.,
where an optical soliton is formed), n�x� � n1 < n0; jxj<
L. In addition, to stabilize the soliton, we introduce local
‘‘wells’’ with a higher value of the refractive index n � n2
(n1 < n2 < n0) inside the n � n1 section, the width of each
well is Lb < L. It would suffice to insert only one well, but
the TW configuration provides one with more pronounced
Fano resonances. The resulting structure of the effective
potential n20 � n2�x�, caused by the refractive index modu-
lation, and the stable optical soliton profile C�x� are shown
in Fig. 3(a). The transmission coefficient computed for the
system both with and without solitons with different pa-
rameters is plotted in Fig. 3(b).

Note, that the T�kx� dependence for the TW configura-
tion without a soliton has several peculiarities. First of all,
there is always a critical value k̂, below which the trans-
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FIG. 3. (a) The effective potential n20 � n2�x� (dashed line) and
the soliton profile C�x� (solid line) for the TW configuration,
parameter values are: n0 � 1:44, n1 � 1:4, n2 � 1:42, L � 12,
Lb � 4, � � 1:4417, �2 � n20 � 5:0e� 3. The dotted line
shows the soliton profile for the case of a homogeneous core
n�x� � n0 � 1:44 with the same value of the soliton parameter
�; (b) Transmission coefficient T�kx� for the system without a
soliton (dashed line), and with solitons having different parame-
ter values: � � 1:4417, �2 � n20 � 5:0e� 3 (solid black line),
� � 1:4434, �2 � n20 � 1:0e� 2 (solid gray line). Vertical line
indicates the critical value k̂ � 0:337 (see the main text for
details). Note that � � 1 here (coherent interaction).
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mission coefficient is rather small. This has a direct con-
nection to the well-known effect of the ‘‘total internal
reflection’’ at the boundary between the homogeneous
core and the central section with a lower value of the
refractive index. In addition, we observe several transmis-
sion peaks at larger kx values connected with internal
modes and determined by the specific internal configura-
tion of the TW section [i.e., by the n�x� dependence] [12].

Switching on a spatial optical soliton has a twofold
effect on the T�kx� dependence. We add both the dc part
and coupling to the closed channel mediated by the ac part
of the corresponding effective potential in (3) to the scat-
tering potential. The Kerr nonlinearity changes the effec-
tive refractive index in the scattering center region:
n2eff�x� � n2�x� � 	jC�x�j2. This, in turn, leads to a total
restructuring of all the internal modes, and therefore all
the resonant transmission peaks are shifted, as seen in
Fig. 3(b). This effect has a ‘‘stationary’’ nature, meaning
that only the soliton profile C�x�, rather than its phase, is
responsible for the new positions of the resonance trans-
mission peaks.

Most important, one can clearly observe the appearance
of the resonant reflection (T � 0) of the probe beam in the
‘‘dark region’’ kx < k̂ [see inset in Fig. 3(b)]. Thus, the
specially designed configuration of the planar waveguide
core allows one to observe Fano resonances for coherent
scattering, provided that the soliton intensity (which is
directly connected to its parameter �) is not too high. At
low soliton intensities (small values of �) we also observe
an additional resonance transmission peak (T � 1) close to
the position of the Fano resonance [solid black curve in
Fig. 3(b)]. Such a perfect transmission resonance generally
accompanies Fano resonances when the coupling between
the open and closed channels is small [3]. As the soliton
intensity increases, and therefore the strength of coupling
between the open and closed channels also increases, the
Fano resonance position, together with the resonance trans-
mission position, are shifted towards the lower band edge
(kx � 0). For higher values of the soliton intensity only
resonant reflection is observed, while the resonance trans-
mission peak is already outside the allowed wave number
range; see solid gray curve in Fig. 3(b). Finally, at high
enough soliton intensities both resonance effects disappear,
so that for � � 1:47 (�2 � n20 � 0:1) we observe only the
above stationary effect of shifting of all the resonance
transmission peaks connected to the internal modes.

To conclude, we propose experimental setups for a
direct observation of Fano resonances in scattering of light
by optical solitons. Such experiments would be of a great
importance, as they could confirm several theoretical pre-
dictions of resonance phenomena in plane wave scattering
by localized nonlinear excitations [3]. The scattering pro-
cess is performed in a planar waveguide core. Two possible
02390
ways to obtain resonances in the transmission are either to
introduce a decoherence between the probe and the soliton
beams, or to insert a specially designed nonhomogeneous
refractive index section inside the core. In both cases all the
resonance effects, predicted by our analysis, can be easily
tuned in experiment, as they strongly depend on the soliton
intensity. This could also be of importance from the prac-
tical point of view, giving an opportunity to use such
resonance effects in different optical switchers for high-
speed optical communication devices and also in exten-
sively developing area of optical logic devices.
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