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Effective Nucleon Masses in Symmetric and Asymmetric Nuclear Matter
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The momentum and isospin dependence of the in-medium nucleon mass are studied. Two definitions of
the effective mass, i.e., the Dirac mass m�

D and the nonrelativistic mass m�
NR which parametrizes the

energy spectrum, are compared. Both masses are determined from relativistic Dirac-Brueckner-Hartree-
Fock calculations. The nonrelativistic mass shows a distinct peak around the Fermi momentum. The
proton-neutron mass splitting in isospin asymmetric matter is m�

D;n < m
�
D;p and opposite for the non-

relativistic mass, i.e., m�
NR;n > m

�
NR;p, which is consistent with nonrelativistic approaches.
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The introduction of an effective mass is a common
concept to characterize the quasiparticle properties of a
particle inside a strongly interacting medium. It is also a
well established fact that the effective nucleon mass in
nuclear matter or finite nuclei deviates substantially from
its vacuum value [1–3]. However, there exist different
definitions of the effective nucleon mass, which are often
compared and sometimes even mixed up: the nonrelativ-
istic effective mass m�

NR and the relativistic Dirac mass
m�
D. These two definitions are based on completely differ-

ent physical concepts. The nonrelativistic mass parame-
trizes the momentum dependence of the single particle
potential. It is the result of a quadratic parametrization of
the single particle spectrum. On the other hand, the rela-
tivistic Dirac mass is defined through the scalar part of the
nucleon self-energy in the Dirac field equation which is
absorbed into the effective mass m�

D � M� Re�s�k; kF�.
This Dirac mass is a smooth function of the momentum. In
contrast, the nonrelativistic effective mass—as a model
independent result—shows a narrow enhancement near
the Fermi surface due to an enhanced level density [1–3].

Although related, these different definitions of the ef-
fective mass have to be used with care when relativistic and
nonrelativistic approaches are compared on the basis of
effective masses. While the Dirac mass is a genuine rela-
tivistic quantity, the nonrelativistic mass m�

NR can be de-
termined from both relativistic as well as nonrelativistic
approaches. A heavily discussed topic is in this context the
proton-neutron mass splitting in isospin asymmetric nu-
clear matter. This question is of importance for the forth-
coming new generation of radioactive beam facilities
which are devoted to the investigation of the isospin de-
pendence of the nuclear forces at its extremes. However,
presently the predictions for the isospin dependence of the
effective masses differ substantially [4].

Brueckner-Hartree-Fock (BHF) calculations [5,6] pre-
dict a proton-neutron mass splitting of m�

NR;n > m
�
NR;p in

isospin asymmetric nuclear matter. This stands in contrast
to relativistic mean-field (RMF) theory. When only a vec-
tor isovector � meson is included, Dirac phenomenology
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predicts equal masses m�
D;n � m�

D;p, while the inclusion of
the scalar isovector � meson, i.e., �� �, leads to m�

D;n <
m�
D;p [4,7]. When the nonrelativistic mass is derived from

RMF theory, it shows the same behavior as the Dirac mass,
namely, m�

NR;n < m
�
NR;p [4].

Relativistic ab initio calculations based on realistic
nucleon-nucleon interactions, such as the Dirac-
Brueckner-Hartree-Fock (DBHF) approach, are the proper
tool to answer this question. However, results from DBHF
calculations are still controversial. They depend strongly
on approximation schemes and techniques used to deter-
mine the Lorentz and the isovector structure of the nucleon
self-energy.

In one approach, originally proposed by Brockmann and
Machleidt [8]—we call it the fit method in the following—
one extracts the scalar and vector self-energy components
directly from the single particle potential. Thus, mean
values for the self-energy components are obtained where
the explicit momentum dependence has already been aver-
aged out. In symmetric nuclear matter, this method is
relatively reliable, but the extrapolation to asymmetric
matter introduces two new parameters in order to fix the
isovector dependences of the self-energy components. This
makes the procedure ambiguous, as has been demonstrated
in [9]. Calculations based on this method predict a mass
splitting of m�

D;n > m
�
D;p [10]. On the other hand, the

components of the self-energies can directly be determined
from the projection onto Lorentz invariant amplitudes.
Projection techniques are complicated but more accurate.
They have been used, e.g., in [11–13]. When projection
techniques are used in DBHF calculations for asymmetric
nuclear matter, a mass splitting of m�

D;n < m
�
D;p is found

[9,14,15]. In the present work, we compare the Dirac and
the nonrelativistic effective mass, both derived from the
DBHF approach based on projection techniques, in sym-
metric and asymmetric nuclear matter.

In the relativistic Brueckner approach nucleons are
dressed inside nuclear matter as a consequence of their
two-body interactions with the surrounding particles. The
in-medium interaction, i.e., the T matrix, is treated in the
2-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.022302


PRL 95, 022302 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
8 JULY 2005
ladder approximation of the relativistic Bethe-Salpeter
equation:

T � V � i
Z
VQGGT; (1)

where V is the bare nucleon-nucleon interaction. The
intermediate off-shell nucleons are described by a two-
body propagator iGG. The Pauli operator Q prevents scat-
tering to occupied states. The Green function G, which
describes the propagation of dressed nucleons in the me-
dium, fulfills the Dyson equation:

G � G0 �G0�G: (2)

G0 denotes the free nucleon propagator, whereas the influ-
ence of the surrounding nucleons is expressed by the self-
energy �. In the Brueckner formalism, this self-energy is
determined by summing up the interactions with all the
nucleons inside the Fermi sea F in Hartree-Fock approxi-
mation:

� � �i
Z
F
�Tr�GT� �GT�: (3)

The coupled set of Eqs. (1)–(3) represents a self-
consistency problem and has to be iterated until conver-
gence is reached. The self-energy consists of scalar �s and
vector �� � ��o;k�v� components:

��k; kF� � �s�k; kF� � �0�o�k; kF� � � 	 k�v�k; kF�:
(4)

The decomposition of the self-energy into the different
Lorentz components (4) requires the knowledge of the
Lorentz structure of the T matrix in (3). For this purpose
the T matrix has to be projected onto covariant amplitudes.
We use the subtracted T matrix representation scheme for
the projection method described in detail in [13,15].

The effective Dirac mass is defined as

m�
D�k; kF� �

M� Re�s�k; kF�
1� Re�v�k; kF�

; (5)

i.e., it accounts for medium effects through the scalar part
of the self-energy. The correction through the spatial �v
part is generally small [11,13,15].

The effective mass, which is usually considered in order
to characterize the quasiparticle properties of the nucleon
within nonrelativistic frameworks, is defined as

m�
NR � jkj�dE=djkj��1; (6)

where E is the energy of the quasiparticle and k is its
momentum. When evaluated at k � kF, Eq. (6) yields the
Landau mass related to the f1 Landau parameter of a Fermi
liquid [4,16]. In the quasiparticle approximation, i.e., the
zero width limit of the in-medium spectral function, these
two quantities are connected by the dispersion relation
02230
E �
k2

2M
� ReU�jkj; kF�: (7)

Equations (6) and (7) then yield the following expression
for the effective mass:

m�
NR �

�
1

M
�

1

jkj
d
djkj

ReU
�
�1
: (8)

In a relativistic framework, m�
NR is obtained from the

corresponding Schrödinger equivalent single particle po-
tential,

U�jkj; kF� � �s �
1

M
�E�o � k2�v� �

�2
s � �2

�

2M
: (9)

An alternative would be to derive the effective mass from

Eq. (6) via the relativistic single particle energy E � �1�

Re�v�
��������������������
k2 �m�2

D

q
� Re�o. However, since the single par-

ticle energy contains relativistic corrections to the kinetic
energy, a comparison to nonrelativistic approaches should
be based on the Schrödinger equivalent potential (9) [16].

Thus, the nonrelativistic effective mass is based on a
completely different physical idea than the Dirac mass,
since it parametrizes the momentum dependence of the
single particle potential. Hence, it is a measure of the
nonlocality of the single particle potential U. The non-
locality of U can be due to nonlocalities in space, resulting
in a momentum dependence, or in time, resulting in an
energy dependence. In order to clearly separate both ef-
fects, one has to distinguish further between the so-called k
mass and Emass [16]. The kmass is obtained from Eq. (8)
at fixed energy, while the E mass is given by the derivative
of U with respect to the energy at fixed momentum. A
rigorous distinction between these two masses requires the
knowledge of the off-shell behavior of the single particle
potential U. As discussed, e.g., by Frick et al. [6], the
spatial nonlocalities of U are mainly generated by ex-
change Fock terms, and the resulting k mass is a smooth
function of the momentum. Nonlocalities in time are gen-
erated by Brueckner ladder correlations due to the scatter-
ing to intermediate states which are off shell. These are
mainly short-range correlations which generate a strong
momentum dependence with a characteristic enhancement
of the E mass slightly above the Fermi surface [3,6,16].
The effective nonrelativistic mass defined by Eqs. (6) and
(8) contains both nonlocalities in space and time and is
given by the product of k mass and E mass [16]. It should
therefore show such a typical peak structure around kF.
The peak reflects—as a model independent result—the
increase of the level density due to the vanishing imaginary
part of the optical potential at kF, which is seen, e.g., in
shell model calculations [2,3,16]. One has to account,
however, for correlations beyond mean field or Hartree-
Fock in order to reproduce this behavior.
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FIG. 1. The effective mass in isospin symmetric nuclear matter
as a function of the momentum k � jkj at different densities.
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FIG. 2. The effective mass in isospin symmetric nuclear matter
at k � jkj � kF as a function of the Fermi momentum kF.
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FIG. 3. Neutron effective mass as a function of the momentum
k � jkj for various values of the asymmetry parameter ! at fixed
nuclear density nB � 0:166 fm�3.
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The following results and discussions are based on the
Bonn A nucleon-nucleon potential. However, they do not
strongly depend on the particular choice of the interaction.

In Fig. 1 the nonrelativistic effective mass and the Dirac
mass are shown as a function of momentum k at different
Fermi momenta of kF � 1:07, 1.35, and 1:7 fm�1, which
correspond to nuclear densities nB � 4k3F=6 

2 � 0:5n0,
n0, and 2n0, where n0 � 0:166 fm�3 is the nuclear satura-
tion density. The projection method reproduces a pro-
nounced peak of the nonrelativistic mass slightly above
kF as it is also seen in nonrelativistic BHF calculations
[16]. With increasing density, this peak is shifted to higher
momenta and slightly broadened. The Dirac mass is a
smooth function of k with a moderate momentum depen-
dence. The latter is in agreement with the ‘‘reference
spectrum approximation’’ used in the self-consistency
scheme of the DBHF approach [15]. Both Dirac and non-
relativistic mass decrease in average with increasing nu-
clear density. For completeness it should be mentioned
that, if m�

NR is extracted directly from the single particle
energy (6) instead from the potential (9), results are very
similar. Differences occur only at high momenta, where
relativistic corrections to the kinetic energy come into play.

In the relativistic framework the single particle potential
and the corresponding peak structure of the nonrelativistic
mass are the result of subtle cancellation effects of the
scalar and vector self-energy components. This requires a
very precise method in order to determine variations of the
self-energies �, which are small compared to their absolute
scale. The used projection techniques are the adequate tool
for this purpose. Less precise methods yield only a small
enhancement, i.e., a broad bump around kF [11,16]. The
extraction of mean self-energy components from a fit to the
single particle potential is not able to resolve such a
structure at all.

Figure 2 compares the density dependence of the two
effective masses. Both the nonrelativistic and the Dirac
mass are determined at the Fermi momentum k � jkj �
02230
kF and shown as a function of kF. Initially, the nonrelativ-
istic mass decreases with increasing Fermi momentum kF.
However, at high values of the Fermi momentum kF, it
starts to rise again. The Dirac mass, in contrast, decreases
continuously with increasing Fermi momentum kF. In
addition, results from nonrelativistic BHF calculations
[17], based on the same Bonn A interaction, are also
shown, and the agreement between the nonrelativistic
and the relativistic Brueckner approach is quite good.

In Fig. 3 the neutron nonrelativistic and the Dirac mass
are plotted for various values of the asymmetry parameter
! � �nn � np�=nB at fixed nuclear density nB �

0:166 fm�3. An increase of! enhances the neutron density
and thus has for the density of states the same effect as an
increase of the density in symmetric matter. Another inter-
esting issue is the proton-neutron mass splitting in asym-
metric nuclear matter. Although the Dirac mass derived
from the DBHF approach has a proton-neutron mass split-
2-3
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ting of m�
D;n < m

�
D;p, as can be seen from Fig. 3, the non-

relativistic mass derived from the DBHF approach shows
the opposite behavior; i.e., m�

NR;n > m
�
NR;p, which is in

agreement with the results from nonrelativistic BHF cal-
culations [5,6]. In Fig. 3 only neutron masses are depicted,
but the corresponding proton masses always behave oppo-
site; i.e., a neutron mass which is decreasing (increasing)
with asymmetry corresponds to a increasing (decreasing)
proton mass.

Figure 4 demonstrates finally the influence of the ex-
plicit momentum dependence of the DBHF self-energy. In
RMF theory the Dirac mass and the vector self-energy are
momentum independent. The nonrelativistic mass is now
determined from the RMF approximation to the single
particle potential, i.e., neglecting the momentum depen-
dence of the scalar �s and vector fields �o and �v in
Eqs. (5) and (9). The single particle energy is then given

by ERMF� �1�Re�v�kF��
������������������������������
jkj2�m�2

D �kF�
q

�Re�o�kF�.
In Fig. 4 this ‘‘RMF’’ nonrelativistic mass is plotted for
various values of the asymmetry parameter ! at nB �
0:166 fm�3. For comparison the full DBHF nonrelativistic
and Dirac masses for symmetric nuclear matter are shown
as well. Because of the parabolic momentum dependence
of ERMF, the corresponding RMF mass has no bump or
peak structure but is a continuously rising function with
momentum. At k � kF, it corresponds to the RMF Landau
mass [16,18]. The RMF nonrelativistic mass decreases
with an increasing asymmetry parameter. RMF theory
predicts the same proton-neutron mass splitting for the
Dirac and the nonrelativistic mass, i.e., m�

D;n < m
�
D;p and

m�
NR;n < m

�
NR;p. This is a general feature of the RMF

approach [4]. Full DBHF theory is in agreement with the
prediction of RMF theory concerning the Dirac mass.
However, the mass splitting of the nonrelativistic mass is
reversed due to the momentum dependence of the self-
02230
energies, respectively, the nonlocal structure of the single
particle potential, which is neglected in RMF theory.

In summary, effective nucleon masses in isospin sym-
metric and asymmetric nuclear matter have been derived
from the DBHF approach based on projection techniques.
We compared the momentum and isospin dependence of
the relativistic Dirac mass and the nonrelativistic mass
which parametrizes the energy dependence of the single
particle spectrum. First, the nonrelativistic effective mass
shows a characteristic peak structure at momenta slightly
above the Fermi momentum kF, which indicates an en-
hanced level density near the Fermi surface. The Dirac
mass is a smooth function of k with a weak momentum
dependence. Second, the controversy between relativistic
and nonrelativistic approaches concerning the proton-
neutron mass splitting in asymmetric nuclear matter has
been resolved. The Dirac mass shows a mass splitting of
m�
D;n < m

�
D;p, in line with RMF theory. However, the non-

relativistic mass derived from the DBHF approach has a
reversed proton-neutron mass splitting m�

NR;n > m
�
NR;p,

which is in agreement with the results from nonrelativistic
BHF calculations.
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[6] T. Frick, Kh. Gad, H. Müther, and P. Czerski, Phys. Rev. C
65, 034321 (2002); Kh. S. A. Hassaneen and H. Müther,
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