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Superfluid-Insulator Transition in a Moving System of Interacting Bosons
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We analyze the stability of superfluid currents in a system of strongly interacting ultracold atoms in an
optical lattice. We show that such a system undergoes a dynamic, irreversible phase transition at a critical
phase gradient that depends on the interaction strength between atoms. At commensurate filling, the phase
boundary continuously interpolates between the classical modulation instability of a weakly interacting
condensate and the equilibrium quantum phase transition into a Mott insulator state at which the critical
current vanishes. We argue that quantum fluctuations smear the transition boundary in low dimensional
systems. Finally we discuss the implications to realistic experiments.
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The quantum phase transition from a superfluid (SF) to a
Mott insulator (IN) [1] is an important paradigm of strong
correlation physics. Recently this transition was demon-
strated in spectacular experiments involving ultracold
atoms in an optical lattice [2,3]. An important feature of
these systems is that they can be essentially isolated from
the environment, opening unique possibilities to study, not
only the equilibrium phase diagram, but also quantum
dynamics very far from equilibrium [4–10]. In particular,
it is now possible to explore a new class of phenomena
involving nonequilibrium dynamics in the vicinity of quan-
tum phase transitions.

In this Letter we analyze the stability of superfluid
current flow in a system of strongly interacting bosons in
a lattice. We show that at the mean-field level such a
system undergoes a dynamic phase transition, associated
with irreversible decay of the superfluid flow at a critical
momentum that depends on the interaction strength. We
argue that quantum phase fluctuations play an important
role near the phase boundary. In systems of lower dimen-
sionality, they broaden the transition significantly as was
indeed observed in recent experiments [11] and numerical
simulations [10,12] in one dimensional systems. In three
dimensions, by contrast, we predict that the current decay
rate exhibits a sharp discontinuity at the mean-field tran-
sition. We propose to test this prediction with transport
experiments along the lines of Ref. [11], in three dimen-
sional optical lattices.

Awell studied effect, closely related to our discussion, is
the modulational instability of weakly interacting bosons
on a lattice [6,7]. It was experimentally demonstrated
[5,13] that such a condensate undergoes a dynamical lo-
calization transition, involving onset of chaos, when the
phase gradient (or condensate momentum) associated with
the flow exceeds �=2 per lattice unit. The dynamic phase
transition described in this Letter interpolates continuously
between the classical instability at condensate momentum
�=2 and the quantum phase transition into the Mott state at
zero current, thereby establishing a natural connection
between the two transitions.
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Dependence of the critical momentum on the interaction
can be understood as follows. The superfluid current I
associated with a condensate moving within the lowest
Bloch band is I�p� � �s sin�p�, where p is the (quasi)mo-
mentum of the condensate measured in the units of inverse
lattice constant and �s is the superfluid density. In a weakly
interacting condensate �s is independent of p. Thus, the
current increases with p up to a maximal value at pc �
�=2. Beyond this point, the effective mass changes sign
and any further increase in p results in decrease of the
current, rendering the superfluid unstable [14]. At strong
interactions � itself is a function of the effective mass and
thus also of p. Specifically, � decreases as p is increased,
such that the maximum of I�p� occurs in general at pc <
�=2. In particular, close to the Mott insulator, a slight
increase in effective mass, and thus also in p, leads to
vanishing of �. Therefore, pc tends to zero toward the Mott
transition. These considerations include the effect of quan-
tum depletion at the mean-field level, which is effective in
all dimensions, and leads to a stability phase diagram (for
commensurate filling) depicted in Fig. 1. Smearing of the
transition lines by quantum phase slips beyond mean-field
theory is effective only in lower dimensions.

Static and dynamic properties of condensates in optical
lattices can be described by the Bose Hubbard model
(BHM)
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U
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where J is the hopping amplitude between the nearest
neighbors hiji, U is the on-site repulsive interaction, and
ni � ayi ai is the number operator. We denote the average
number of bosons per site by N. Provided the system is
deep in the superfluid phase (JN 
 U), the dynamics can
be well approximated by the discrete Gross-Pitaevskii
equations (GP)
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FIG. 1 (color online). Stability phase diagram in the plane of
phase twist per bond vs dimensionless interaction for filling of
N � 1 particle per site found from numerical solution of time
dependent Gutzwiller equations (8).
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where  i � haii is the matter field and the set O contains
the nearest neighbors of site i. Linear mode analysis
around the stationary current carrying solutions
 i�

����
N

p
exp�ipxi� yields the onset of instability at p �

�=2 [6,7].
Close to the Mott transition, increased quantum fluctua-

tions invalidate the GP description. However, one can still
use semiclassical order parameter dynamics if one coarse
grains the system into blocks of roughly a coherence length
�, which is related to the superfluid density by a standard
scaling form [15]. As in the weak coupling theory, the
current should become unstable when the phase change
per unit cell exceeds�=2, with the unit cell now of order �.
Since the coherence length, �, diverges at the transition, we
expect pc to vanish as 1=�, as we indeed find below. The
diverging length scale facilitates a continuum description
of the dynamics close to the Mott transition, in the form of
a time dependent Ginzburg-Landau equation [8,14]

� � r2 	  ���2 � j j2�: (3)

Within the mean-field approximation, and in the limit of
large average occupation N 
 1, ��2 � 2d�1� u�, where
u � U=�8JNd� is the dimensionless interaction constant.
If N is not too large then Eq. (3) still holds but the
expressions for � and u are more complicated [14].

We choose the zero of energy at the state with integer
filling. Then the deviation from commensurate density is
given in terms of the superfluid order parameter  by �n �

Cd� 
� _ �  _ ��=2i, with Cd � u�1�2d��3=2 and d being

the dimensionality of the system. Note that
R
ddx�n is a

constant of motion under (3). The supercurrent is similarly
given by I � Cd� �r �  r ��=2i.
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The equation of motion (3) admits uniform solutions

 � �eipx	i�t, with � �
��������������������������������
��2 	�2 � p2

p
, which are

characterized by a phase gradient p and a relative density

�n � Cd����2 	�2 � p2�: (4)

In particular, at commensurate filling � � 0 and  is time
independent. To analyze whether these solutions are stable
we find the spectrum of small fluctuations around them.
There are two eigenmodes in the superfluid regime (��2 >
0): a stable gapped mode and a phase (Bogoliubov) mode
with linear dispersion at long wavelengths. The dispersion
of the latter, for wave vectors parallel to the current, reads:
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q
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Here the first term is analogous to the usual Doppler shift
and the second describes propagation of the sound waves in
the moving reference frame. The onset of imaginary fre-
quencies marking the instability occurs at p2

c ���pc�
2 �

1=3�2. Combining this with Eq. (4) we find that forN 
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As argued before on general grounds, in the case of com-
mensurate filling �n � 0, the critical phase gradient van-
ishes toward the equilibrium Mott transition (u � 1) as
pc / 1=� /

������������
1� u

p
. At incommensurate density there is

no equilibrium Mott transition. As a result, we do not
expect the instability to reach p � 0. Indeed, pc has a
minimum at u < 1 (� <1) and diverges as u! 1. The
divergence simply signals the breakdown of the continuum
theory and is cut off by the lattice.

To interpolate between the regimes of weak and strong
interactions we employ the Gutzwiller approximation [16].
In this approach, the wave function is assumed to be
factorizable:

jGi �
Y
j


X1
n�0

fjnjnij

�
: (7)

Here j is a site index and n is the site occupation. The
ansatz (7) supplemented by self-consistency conditions
leads to equations of motion for the variational parameters:

�i _fjn �
U
2
n�n� 1�fjn � Jz�
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where

 j �
1

z

X
i2O

hGjaijGi: (9)

For actual calculations with N � 1 we truncated (7) at five
and ten states per site without noticeable differences in the
results.
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Equations (8) admit uniform current carrying solutions.
We numerically check their stability to slight perturbations
in the equations of motion. We show the stability bounda-
ries at commensurate filling in Fig. 1. It is evident that the
dynamical instability at �=2 in the GP regime is continu-
ously connected to the equilibrium (zero current) Mott
transition. Note that the accuracy by which we determine
pc from the simulation suffers from the fact that the
characteristic time scale of the instability diverges as U !
0. This is the reason for the small deviation of pc from �=2
in this limit (see Figs. 1 and 2).

We perform a similar analysis at incommensurate filling
(Fig. 2). In agreement with the continuum expression (6)
we find that the critical momentum pc reaches a minimum
at some u < 1. At stronger interactions, pc increases and
saturates at �=2.

The mean-field transition discussed above ignores the
possibility of current decay below the critical momentum
due to quantum tunneling out of the metastable state. Such
processes are exponentially suppressed by a tunneling
action through a barrier. But since the barrier vanishes at
the mean-field instability, they can potentially broaden the
transition rendering the phase diagrams of Figs. 1 and 2
meaningless. This problem is addressed in full detail in
Ref. [14] within the general framework of [17]. Here we
describe one important result for the decay rate close to the
equilibrium SF-IN transition, i.e., at small critical current.
To obtain the tunneling action close to the critical current
we expand the GL action associated with (3) around the
metastable solution to cubic order in the fluctuations. Then
we use a scaling approach similar to the one introduced in
Ref. [18] in the context of spinodal decomposition. Since
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FIG. 2 (color online). Stability phase diagrams for different
filling factors in a two-dimensional lattice from numerical solu-
tion of the time dependent Gutzwiller equations (8). Away from
commensurate filling the critical phase gradient reaches a mini-
mum and climbs back to �=2.

02040
the instability in (5) arises at k ! 0 the barrier vanishes
only for a tunneling instanton of diverging (space-time)
volume. By dimensional analysis we find Vinst /

�pc � p�d	1=2, while the energy density of the barrier Eb /
�pc � p�3. Consequently the instanton action is Sinst �
Eb � Vinst / Bd�pc � p�2:5�d. Note that this scaling is dif-
ferent from that derived in Ref. [18], because the field  is
complex. Thus in one and two dimensions the tunneling
action vanishes continuously toward the mean-field tran-
sition. Then we expect the transition to become a wide
crossover (Bd is calculated in [14] and found to be of order
unity). This agrees with recent experiments [11] and nu-
merical simulations [10] in one dimensional traps.

In three dimensions, by contrast, the action of ‘‘critical’’
instantons diverges because of their diverging volume.
Currents would then rather decay via noncritical instan-
tons, i.e., ones of finite size that feel a finite energy barrier,
and thus cost finite action. We therefore predict that in
three dimensions, the decay rate will exhibit a discontinu-
ity at the mean-field transition. A variational calculation
[14] yields a rate � / e�4:3 in the vicinity of the transition.
In this sense the mean-field phase diagram (Fig. 1) is well
defined in three dimensions.

In realistic experimental situations condensates are con-
fined in harmonic traps which leads to a nonuniform den-
sity distribution in the form of domains with different N. In
the weakly interacting regime the critical momentum is
pc � �=2; i.e., it is insensitive to the spatial density varia-
tion induced by the harmonic confinement. By contrast, in
the regime of strong interactions the position of the dy-
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FIG. 3 (color online). Time dependence of the condensate
momentum in a two-dimensional harmonic trap with different
filling factors per central site. The simulated system is a lattice of
dimensions 120� 60 with global trapping potential V�jx; jy� �
0:01�j2x 	 j2y�. We set the hopping amplitude J � 1 while in-
creasing the interaction linearly in time: U�t� � 0:01t.
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namical instability strongly depends on the filling factor N
that is directly affected by the density distribution. In
particular, the motion first becomes unstable for the small-
est integer filling N � 1.

In Fig. 3 we plot the time evolution of the condensate
momentum (computed within the Gutzwiller approxima-
tion) in a trap for two different filling factors. The center of
mass motion becomes unstable at approximately the same
interaction strength in both cases. But while at smaller
filling the condensate motion rapidly becomes chaotic as
in the uniform case, damping of oscillations at larger filling
occurs much more gradually. These results can be under-
stood by noting that if the phase gradient in the condensate
exceeds the critical value corresponding to N � 1 these
domains become unstable triggering the decay of current.
However, when there is high filling of the central sites the
overall weight of domains with N � 1 is small. Thus the
effect of the instability on the total current is reduced.

An important experimental manifestation of these re-
sults is the inherently irreversible nature of the phase
transition at finite currents. Consider a situation in which
a moving condensate is first prepared on a weak lattice.
Then, the depth of the periodic potential is increased
adiabatically [19], which corresponds to moving along a
horizontal line in the parameter space of Fig. 1. Finally, the
lattice depth is slowly decreased back to its original state
and the visibility of the interference fringes compared to
their initial value. If, in this sequence, we pass the insta-
bility, then the current will decay into incoherent excita-
tions and heat the condensate. This will result in total loss
of current and reduced visibility of the interference fringes
at the end of the cycle. Such experiments could be used to
probe the nonequilibrium phase diagram (Fig. 1) and to
determine the position of the equilibrium Mott transition.
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