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Broadband Absorption Spectroscopy via Excitation of Lossy Resonance Modes in Thin Films
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It is shown that broadband absorption spectroscopy utilizing thin lossy film configurations can be
optimally facilitated when applied to metallic and insulating materials. For metallic films, the zero-order
highly lossy resonance mode, characterized by ultra wideband absorption behavior under normal
incidence, can be shifted, under parallel-polarization oblique incidence, toward a narrow band light-
wavelength surface plasmon resonance condition. Higher order low-loss modes, however, occur in thin
insulating films, exhibiting Debye relaxation behavior, typical for many aqueous solutions and biological
substances. They can be excited in a highly scalable and sensitive manner in various frequency bands,
between light and radio frequencies.
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FIG. 1. Physical configuration: oblique incidence of plane
monochromatic wave upon thin absorbing film.
Thin dissipative films are widely utilized in various
microscopy and spectroscopy methods for characterization
of surface and bulk physical properties of materials (e.g.,
[1–3]). In general, high quality factor resonances cannot be
easily obtained in the presence of material losses, which
play a crucial role in establishing highly sensitive and
robust refractive index measurements for these methods.
Herein, the recently presented optimal absorption paths
approach for normal incidence symmetrical case [4], is
extended to incorporate oblique incidence of electromag-
netic waves upon asymmetrically surrounded lossy film,
allowing an effective implementation in a novel absorption
spectroscopy method. Rigorous solution of macroscopic
Maxwell equations in a thin film limit renders a closed-
form prediction of all possible lossy resonance modes
(LRM) and their universal absorptivity bound. The zero-
order LRM reveal and define the conditions for the well-
known surface plasmon resonance (SPR) total absorption,
known as one of the most sensitive subwavelength spec-
troscopy technique and widely utilized for monitoring
hybridization reactions, biomolecule and chemical sens-
ing, characterization of ultrathin films adsorbed onto noble
metal surfaces, as well as being currently explored for its
potential in subwavelength optics and data storage [2,5–7].
Being limited to near-plasma frequencies of metals, lying
in the visible and near-infrared bands, surface plasmons
can be excited under very specific conditions and usually
have poor penetration depth into adsorbing layers [8].
Nevertheless, it is demonstrated here that ultrasensitive
and highly scalable refractive index absorption spectros-
copy is possible for a wide range of frequency bands, from
rf (radio frequency) to submillimeter and light wave-
lengths, using excitation of high-order (Fabry-Perot-type)
LRM in thin insulating films.

Assuming a harmonic time dependence e�i!t of the
obliquely incident plane wave (Fig. 1), the corresponding
wave numbers k1 � !
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satisfy Ifk1g;Ifk2g;Ifk3g � 0, respectively.

Similarly, the normalized (generally complex) refractive
05=95(1)=018101(4)$23.00 01810
indexes n21 � k2=k1, n32 � k3=k2, and n31 � k3=k1 and
the corresponding normalized permeabilities �21 �
�2=�1, �32 � �3=�2, and �31 � �3=�1 are introduced.
The global reflection and transmission coefficients of the
film, for the transversial electric field components, are well
known (e.g., [9]) and can be represented via
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respectively, where the intrinsic reflection and transmis-
sion coefficients r12, r23, t13, and phases  12 and  23 are
defined in Table I. Subsequently, ’ in (1) and (2) is defined
via
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The distinguishing superscripts TE and TM , corresponding
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to the two elementary plane-wave polarizations, have been
partially omitted in Eqs. (1)–(4) and Table I, only for
relations applying to both polarizations. This rule is
adapted throughout the Letter for all the equations that
apply to both polarizations. The fraction of the incident
wave’s power, absorbed in the film, i.e., the power absorp-
tion efficiency, is thus given via

� � 1� jRj2 � jTj2RfZ13g: (5)

The optimal power absorption condition for the normal-
ized impedance Z12 of the layer (and, subsequently, for
n21), depending parametrically on its normalized thickness
� and on the normalized impedance Z13 of the two sur-
rounding layers, can be readily obtained via optimization
of � with respect to  12, i.e.,
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Utilizing (5) and the explicit expressions for d’=d 12 and
d 23=d 12 (Table I) in conjunction with (6) leads to an
implicit equation for optimal  12;opt,  23;opt, and ’opt, i.e.,
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where x� denotes complex conjugate of x. In the thin film
limit, i.e., when the normalized thickness �! 0, if also
’� �Z12 ! 0, then [via (1) and (2) and Table I]: Rj’!0 �

r13, Tj’!0 � t13, leading to �j�;’!0 � 0. Thus, in this
asymptotic limit, higher efficiency can be obtained only
if Z12 is unbounded, i.e.,  12 � 2i=Z12 ! 0. Moreover,
 12 ! 0 leads to 23 ! 0. Noting that tanx� sinx� x and
cosx� 1, as x! 0, results in (via Table I)  23 �  12Z13,
d 23=d 12 �Z13, and d’=d 12 ��’= 12, leading to
the following thin film approximation of (7), containing
terms up to O	 12
, i.e.,
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Since  12;opt ! 0 and, thus,  �
12;opt ! 0, Eq. (8) can be

fulfilled for

’opt � 	1�Z�
13
 12;opt=2�m�� 2i�= 12;opt; (9)

where m � 0; 1; 2; . . . . Solving the quadratic equation for
 12;opt in (9) and subsequently expressing Z12 � ’opt=�
via  12 in (9), renders a closed-form asymptotic expression
for an infinite number of LRM,
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Substitution of m � 0 provides the following approxima-
tion for the zero-order LRM, i.e.,
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High-order LRM are obtained for either �� 1 or m� 1
as

Z 12;opt;m � �m=�� i	1�Z�
13
=	�m
: (12)

It should be noted that, in the limit of a thin film, the
normalized impedance Z12 can be asymptotically trans-
lated (via Table I) into the normalized complex refractive
index n21 as

n21;opt;m �Z
TE
TM
12;opt;m�21cos

�1�1: (13)

Finally, substituting the asymptotic results for  1;opt,  2;opt,
and ’opt into (5) renders the following universal asymp-
totic value of the optimal power absorption efficiency in
the thin film limit, valid, simultaneously, for all the lossy
resonance modes, namely,

�opt � 1=	1� RfZ13g
; m � 0; 1; 2; . . . : (14)

Power absorption efficiency of thin films is thus asymptoti-
cally bounded by (14) for any selection of Z12, depending
on RfZ13g only, i.e., on the wave impedances of the
surrounding media n31=�31 and the incidence angle �1 of
the plane wave. It is readily reduced to �opt � 1=2 for the
normal incidence symmetrical case [4], having Z13 � 1.
Above the critical angle �1 > �1;c � sin�1n31, however,
for which RfZ13g � 0 (assuming Ifn31g � 0), �opt in (14)
attains its maximum, namely �opt � 1, regardless of the
imaginary part of Z13.

The optimal normalized impedance Z12;opt, obtained
implicitly via (7) or asymptotically via (10)–(12), charac-
oefficients, the associated impedances, and phase relations.
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FIG. 2. Intersections of the first four optimal power absorption
paths (m � 0, 1, 2, 3), obtained via (7), with the material (water
and silver layers) dispersion curves in the complex Z12 domain.
Oblique incidence above critical angle �1�50�>49:5� ��1;c
for n31�0:76, n10�1:33, ZTE

13 �0:14i, ZTM
13 ��4i, �31�

�21�1.
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terizes two basic types of materials suitable for obtaining
an optimally absorbing thin film of normalized width ��
1. This can be readily verified via the asymptotic expres-
sions (12) and (11), associated with low-loss (insulating)
and high-loss (metallic) type films, respectively. The solu-
tions for m � 1 in (12), corresponding to the low-loss
(Fabry-Perot-type) optimal LRM, exhibit the same disper-
sion behavior below and above the critical angle, since the
dominant term of O	1=�
 in (12) is independent of Z13.
Moreover, the same asymptotic expression (12) is valid for
both TE and TM polarizations. This, however, is not the
case for the m � 0 mode in (11). Below the critical angle,
it matches, over ultrawide bands of frequencies and for
both polarizations, the low-frequency dispersion relation
of good conductors [4], characterized by the loss angle
argfZ12;optg � 45� in (11). Above the critical angle Z13

becomes purely imaginary (assuming that n31 is real), thus
the loss angle can be shifted from the value of 45� by
assigning imaginary values for Z13 in (11). As the incident
angle varies in the range �1;c < �1 <�=2, the loss angle of
Z12;opt for TE and TM polarized waves vary in the range
45� > argfZTE

12;optg> 0� and 90� > argfZTM
12;optg> 45�, re-

spectively, since above the critical angle IfZ�TE
13g> 0 and

IfZ�TM
13g< 0. It is readily noted that, in the transition

�1;c < �1 <�=2, the appropriate TE polarized optimal
TABLE II. Asymptotic values of the optimal absorption resonan
material dispersion relations with optimal absorption paths in the no
and �10 denote speed of light in vacuum and relative permittivity a
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film varies from good electric conductor to poorly con-
ducting material. As for the TM polarized optimal film, its
dispersion behavior is, for �1 � �1;c, that of metals in the
near-plasma frequency band and it becomes that of good
electric conductors as �1 ! �=2.

Experimental verification of the proposed optimization
scheme for the near-plasma frequency band is obtained via
[5], where the corresponding setup parameters d � 40 nm,
� � 1152 nm, �1 � 52:4�, and n31 � 1:322=1:7 lead to
ZTM

13 � �2:434i and � � 0:608. Substituting into (7) via
Table I renders ZTM

12;opt � 0:116� 2:596i, i.e., n21;opt �
0:187� 4:327i, and �opt � 1 in (5). This exact optimal
result is in a very good agreement with the gold film data
n21j��1152 nm�	0:33�7:93i
=1:7�0:194�4:665i ([5],
Table I) and the measured efficiency � � 1� jRj2 �
0:99 ([5], Fig. 1).

Once the frequency dispersion characteristics n21	!

and thickness d of a specific film, translated into Z12 and
� via Table I, match the optimal solution Z12;opt, given
implicitly in (7) or asymptotically in (11) and (12), a highly
sensitive spectroscopy can be implemented. This is further
demonstrated in Fig. 2 for water [10] and silver [11] layers,
representing insulating (Debye) and metallic (Drude) type
dispersions, respectively. One notes that the frequency
dependent water dispersion curve intersects indeed with
the optimal absorption high-order m � 1 paths (exact so-
lutions of (6) or (7) for Z12;opt versus � with a specified
Z13) in the complex Z12 domain for both TE and TM
polarizations, as expected. However, only the m � 0
path, corresponding to TM polarization, is intersected by
the TM dispersion curve of silver in its high-frequency
plasma band, resulting in the well-known SPR total ab-
sorption phenomenon [5,8]. The intersection between the
TE dispersion curve for silver and them � 0 TE path never
occurs since the latter belongs to a good conductor region
in the complex Z12 domain rather than the plasma region.
The intersection points depicted in Fig. 2 for both silver
and water are most conveniently divided into low-
frequency (L0; . . . ; L3) and high-frequency (H0; . . . ; H3)
intersection subsets.

The intersections in Fig. 2 can be generalized for any
metallic or insulating material, upon utilizing their explicit
dispersion relations, given via Drude and Debye formulas,
respectively [10], as summarized in Table II. The optimal
values in Table II were obtained by analytically determin-
ing the intersections between the dispersion formulas and
the asymptotic expressions in (11) and (12). It should be
t frequencies !opt and film thicknesses dopt at intersections of
rmalized complex impedance domain Z12. The constants c, "10,
nd permeability of the first (k1) layer, respectively.

& Eq. (12) High-frequency intersections, Drude & Eq. (15), Debye & Eq. (12)
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noted however that, when � is not sufficiently small, the
high-frequency SPR intersection point (HTM

0 in Fig. 2)
cannot be obtained via (11). This deficiency can be over-
come by noting that the SPR mode, obtained above the
critical angle, is associated with rTM23 ! 1 [8], leading to
ZTM

12;opt ! Z�TM
13 � iIfZ�TM

13 g. Furthermore, since in this
case (5) is reduced to � � 1� jRj2, optimal power ab-
sorption efficiency is readily obtained setting R � 0 in (1),
resulting in ’TM

opt � 	 TM
1;opt �  TM

2;opt
=2� �TMZTM
12;opt above

and in close vicinity of the critical angle or, explicitly,

Z TM
12;opt � iIfZ�TM

13 g�1� 2e�2�TMIfZ
�TM
13 g�i2=IfZ

�TM
13 g�: (15)

It should be also noted that above the critical angle, the
solution of (7) is identical to the requirement R � 0, hence
the paths associated with real Z13, which usually terminate
[4], become continuous in their transition to the thick slab
limit, as depicted in Fig. 2.

Naturally, depending on the particular application, the
absorption spectroscopy can be facilitated for any of the
three layers involved (Fig. 1). Its potential promise is
demonstrated via Fig. 3, where sensitivity of the power
absorption efficiency resonance is depicted versus fre-
quency in the vicinity of all the intersection points (reso-
nance frequencies and the associated film thicknesses) in
Fig. 2. While the low-frequency intersections of water
dispersion with the m � 1 paths usually occur in the rf
and microwave bands [Fig. 3(a)], the high-frequency in-
tersections are expected to occur in the submillimeter and
infrared bands [Fig. 3(b)]. One notes that the high-
frequency intersection points H1; . . . ; H3 feature optimal
film thicknesses that are almost frequency independent for
all the m � 1 modes [Fig. 3(b) and Table II]. The corre-
sponding metallic film SPR intersections usually occur in
the infrared and visible light bands [Fig. 3(c)].
Furthermore, while high-order (m � 1) paths always inter-
sect perpendicularly the insulator dispersion curves
(Fig. 2), these associated with the SPR (m � 0) intersect
01810
almost tangentially and thus may not intersect at all for
incidence angle �1 that is too close to the critical angle �1;c
(when IfZ13g becomes too large). Finally, while SPR
excitation is impossible below �1;c, the lossy Fabry-
Perot-type modes (m � 1) can be equally excited also
below the critical angle �1;c at the cost of lower efficiency.

In summary, highly scalable and sensitive excitation of
LRM is possible over a wide range of frequency bands with
penetration depths into the absorbing (k2) and adsorbing
(k3) layers varying from shallow surface-limited sensing to
bulk in-depth refractive index measurements.
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