
PRL 95, 016801 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JULY 2005
Intrinsic Spin Hall Effect in the Two-Dimensional Hole Gas
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We show that two types of spin-orbit coupling in the 2 dimensional hole gas, with and without inversion
symmetry breaking, contribute to the intrinsic spin-Hall effect. Furthermore, the vertex correction due to
impurity scattering vanishes in both cases, in sharp contrast to the case of usual Rashba coupling in the
electron band. Recently, the spin-Hall effect in a hole doped GaAs semiconductor has been observed
experimentally by Wunderlich et al. [Phys. Rev. Lett. 94, 047204 (2005).]. From the fact that the lifetime
broadening is smaller than the spin splitting, and the fact impurity vertex corrections vanish in this system,
we argue that the observed spin-Hall effect should be in the intrinsic regime.
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Recent theoretical work predicts dissipationless spin
currents induced by an electric field in semiconductors
with spin-orbit coupling [1–3]. The spin current is related
to the electric field by the response equation

jij � �s�ijkEk; (1)

where jij is the current of the ith component of the spin
along the direction j and �ijk is the totally antisymmetric
tensor in three dimensions. Because both the electric field
and the spin current are even under time reversal, the spin
current could be dissipationless or intrinsic, independent of
the scattering rates. The response equation (1) was derived
in [1] for p-doped semiconductors described by the
Luttinger model of the spin-3=2 valence band, and in [2]
for the 2-dimensional electron gas (2DEG) described by
the Rashba model [2].

The spin-Hall effect predicted in [1,2] is fundamentally
different from the extrinsic spin-Hall [4,5] effect due to
Mott-type skew scattering by impurities. The intrinsic
spin-Hall effect arises from the spin-orbit coupling of the
host semiconductor band and has a finite value in the
absence of impurities, while the extrinsic spin-Hall effect
arises purely from the spin-orbit coupling to the impurity
atoms; it is not a bulk effect like the ordinary Hall effect
and its magnitude is typically many orders of magnitude
smaller. The issue of impurity contributions to the spin-
Hall effect has been intensively investigated theoretically.
Remarkably, the authors of [6] calculated the vertex cor-
rections due to impurity scattering in the Rashba model of
the electron band in the context of the spin-Hall effect
(other groups had also computed the vertex correction
earlier [7,8]) and found that the vertex correction com-
pletely cancels the spin-Hall effect [9–11]. On the other
hand, a number of numerical calculations show the spin-
Hall effect independent of the disorder in the weak disorder
limit [12,13]. The problem of the vertex correction does
not occur in the Luttinger model of the hole band [14]. In
fact, the vertex correction is identically zero, rendering the
original prediction of [1] exact in the clean limit. Other
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work [15] claims that the spin accumulation at the edge of
the sample due to spin current vanishes, due to the spin-
torque term that shows up in the transport equations. Their
analysis is entirely in the ground state of the system (not in
the presence of electric field) and also assumes no spin
relaxation which is crucial to obtaining edge spin
accumulation.

Experimental observation of the spin-Hall effect has
been recently reported in a electron doped sample [16] in
a 2-dimensional hole gas (2DHG) [17]. In this Letter, we
analyze the 2DHG experiment. In order to firmly establish
the intrinsic spin-Hall effect, one needs to establish two
things. First, the experimental system needs to be in the
clean limit, which is the case of the 2DHG experiment
[17]. Second, the effect must be robust to disorder in the
clean limit. We show that the spin-Hall effect in the 2DHG
arises from two contributions, one from the Luttinger
Hamiltonian describing the splitting between the light
and the heavy hole bands, and one from the structural
inversion asymmetry (SIA) of the 2DHG band, with spin
splitting scaling as k3 [18,19]. This is different from the
Rashba Hamiltonian of the 2DEG band, where the spin
splitting scales with k. Remarkably, we find that the vertex
correction due to impurity scattering vanishes for both
types of spin-orbit couplings in the 2DHG band, in sharp
contrast to the case of 2DEG. While the calculation details
are complicated, the intuitive reason is simple: the two
types of current vertices in the 2DHG have p- and d-wave
symmetries, respectively, and vanish when averaged over s
wave impurity scatterers. These two key facts establish a
firm foundation to interpret the recent experiment [17] in
terms of the intrinsic spin-Hall effect, where impurities
play an unessential role. The present Letter also helps
clarify the theoretical controversy about the disorder con-
tribution to the spin-Hall effect, as it shows that the can-
cellation in the Rashba Hamiltonian for electrons is not
generic, but rather the opposite.

The Hamiltonian for a 2DHG is a sum of both Luttinger
and spin- ~S � 3=2 SIA terms:
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� ~k � ~S�2 � �� ~S� ~k� � ẑ; (2)

where the confinement of the well in the z direction quan-
tizes the momentum on this axis. The crucial difference
between the SIA term for 2DHG and the Rashba term for
FIG. 1. Approximate band structure of the 2DHG (� �
40 meV, spin splitting of the HH band at kF roughly 5 meV).
The confinement produces a � point gap between the LH and HH
bands, whereas the SIA produces an inner splitting of the HH
and LH bands into HH� and LH�.
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the 2DEG lies in the fact that S is a spin 3=2 matrix,
describing both the light (LH) and the heavy (HH) holes.
For the first heavy- and light-hole bands, the confinement
in a well of thickness a is approximated by the relation
hkzi � 0, hk2zi 
 ��@=a�2. The energies are
ELH�s�1�;HH�s��1�
� �

�1
2m

k2 �
1

2
�k� sLH;HH

�����������������������������������������������������������������������������������������������������������
�2k2 �

��2
m

k�k2 � hk2zi� �
�22
m2 �k

4 � hk2zi2 � k2hk2zi�

s
; (3)
where sLH � 1 and sHH � �1. The heavy- and light-hole
bands are split at the � point by � � 2�2hk

2
zi=m [20,21].

Depending on the confinement scale a the Luttinger term is
dominant for a not too small, while the SIA term becomes
dominant for infinitely thin wells, which correspond to
high junction fields.

Expansion for small k� hkzi shows the spin splitting of
the HH bands is k3 whereas the spin splitting of the LH

bands is k, in agreement with [18,22]: EHH� � EHH� �

3
8���

2 � 4
�22
m2 hk2zi�k

3=
�22
m2 hk2zi

2 �O�k5� and ELH� � ELH� �

2�k�O�k3�. Figure 1 gives a typical band structure for
GaAs (�1 � 6:92, �2 � 2:1) similar to the sample used in
[17]. The SIA splitting is calculated to be � 
 105 m=s.
We can expand the second term in the anisotropic Luttinger
Hamiltonian in terms of Clifford algebra of Dirac � matri-
ces f�a;�bg � 2�abI4�4 (a; b � 1; . . . ; 5) [3]. Since hkzi �
0 and hk2zi � 0 we see that the effect of confinement
renders the da’s of [3]: � ~k � ~S�2 � da�

a, d1 � 0, d2 � 0,
d3 � �

���
3

p
kxky, d4 � �

��
3

p

2 �k2x � k2y�, and d5 � � 1
2 �

�2hk2zi � k2x � k2y�.
Calculation with the full Hamiltonian (2) is analytically

impossible, so we concentrate on limits which maintain
analytic predictability. We first consider the case of a small
junction field and neglect the SIA term:

H �
�1
2m

�k2x � k2y � hk2zi� �
�2
m
da�

a: (4)
The energies are ELH;HH � �1
2m �k

2 � hk2zi� � d, (d �����������
dada

p
�

����������������������������������������
k4 � hk2zi

2 � hk2zik
2

q
). In the experiment re-

cently reported [17], the �-point gap is of order �E �

�2 �2
m hk2zi 
 2 �2

m ��@=a�2� � 40 meV, which corresponds
to an a � 8:3 nm thick quantum well. Our simplistic pre-
diction fares well with the quoted value 3–4 nm [17].

We want to compute the response function Ql
ij�i�m� �

� 1
V

R�
0 hTJ

l
i�u�Jjie

i�mudu of the spin current Jli �
1
2 fS

l; @H@kjg
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@H
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. The spin conductance is

defined as �l
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;

where &l
ab is a tensor defined in [3], nF� are the Fermi

functions of the two bands, and " � �1
2m �k

2
x � k2y � hk2zi� is

the kinetic energy. The last term is the conserved spin
conductance [3] (which represents the response of the
spin projected onto the HH and LH bands [3]), whereas
the first term is the contribution of the nonconserved part of
the spin. Momentum integration yields the only nonzero
components: �3

12 � ��3
21:

�3
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1
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2
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2�2
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2 � hk2zik
2

q
� ln�2
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�
2hk2zi � k2����������������������������������������

k4 � hk2zi
2 � hk2zik

2
q �

k�kLH

k�kHH

; (5)

where kLH, kHH are the Fermi momenta of the light- and
heavy-hole bands. For the experimental data [17], the light-

hole band is fully occupied, so kLH � 0 while
��������
hk2zi

q
�

3:7� 10�26 kgm=s and kHH � 3� 10�26 kgm=s. The
first two terms are due to the nonconserved spin and for
GaAs, �3�noncons�

1;2 � 0:7
8� . The last term is the conserved spin

conductance �3�cons�
12 � 0:6� 1

4� . The total spin conduc-
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tance is �3
12 �

1:9
8� , in good agreement with the numerical

estimate in [17]. For infinite confinement,
��������
hk2zi

q
! 1 the

spin conductance from the Luttinger term vanishes as we
enter the SIA regime.

We now investigate the effect of disorder on the
Luttinger spin-Hall conductance by focusing on the vertex
correction. The free Green function in our system is de-
fined as G0�k; i!n� � �i!n �H��1 � �i!n � ��k� �
�2
m da�a�=��i!n � ��k��2 � �22d

2=m2�. We model the dis-
order as randomly distributed, spin-independent identical
defects V�r� � u�i��r�Ri�. In the Born approximation,
the self-energy is related to the free Green function
��i!n� � nimpu

2
R dk

�2��2
G0�k; i!n� Since

R
dkd3 �R

dkd4 � 0, the self-energy is an isotropic function of ~k:

��i!n� � nimpu
2
Z dk

�2��2
i!n � ��k� � �2

m d5�5
�i!n � ��k��2 � �22d

2=m2 ;

(6)

where d5 � � 1
2 �2hk

2
zi � k2�. This is different from the

bulk Luttinger case, where the d5�k� integral over ~k van-
ishes as well, but the difference is not essential. The full
impurity Green function is G�k; i!n� � G0�k; i!n �
��i!n��. The current vertex satisfies a Bethe-Salpeter
equation similar to [7]. Similar to [14], since the Green
function is an even function of the momentum compo-
nents, while the charge current operator Vj � @H=@kj is
momentum odd in the components kj (because the

Hamiltonian H is even in ~k), it turns out that the free vertex
cancels

R
dkG�k; i!n�Vj�k�G�k; i!n � i�m� � 0. Hence

the vertex correction which is an iterative function of the
free vertex vanishes as well [14]. This result holds even for
the anisotropic Luttinger model, since it uses only the
parity (P) invariance of the Hamiltonian. It is in fact a
theorem that a P-invariant Hamiltonian has vanishing cur-
rent vertex correction due to s-wave scattering, in the Born
approximation. The effect of small SIA splitting (�kF �
�) on the Luttinger spin-Hall conductance enters pertur-
batively only to order �2.

We now turn to the opposite case of strongly confined
quantum wells, in which the SIA term is likely to domi-
nate. The relatively large 5 meV measured splitting [17] of
the HH band makes this regime significant for the experi-
ment. We model the system by a � point gap � plus a spin
3=2 Rashba term �� ~k� ~S�ẑ [23]. We compute the spin
conductance and expand it in terms of the ratio between the
SIA spin splitting and the � point gap, �kf

� < 1. The spin
conductance gets a contribution from the HH band
�3�HH�
12 � 9

8� �1�
�2mHH

2� �. For infinitely thin quantum wells,
�! 1, the HH spin conductance is 9=8�, which is the
same as that obtained [19] by using the effective HH
Hamiltonian Eq. (7). The second term is the first order
finite thickness correction. If the Fermi level is low enough,
01680
there is also a light-hole band contribution of order
�3�LH�
12 � 1

8� �1�
3�2mLH

2� �.
Since working with spin 3=2 matrices is cumbersome

and the LH states are fully filled [17], we project onto the
HH states and use the truncated Hamiltonian [18,19]:

H �
k2

2m
� ��k3��� � k3���� �

k2

2m
� /i�k��i; (7)

where i � x; y, /1 � �ky�3k
2
x � k2y�, and /2 � �kx�3k

2
y �

k2x�, with � a constant. H above becomes exact in the limit
of very confined quantum wells. The spin-Hall conduc-
tance in the disorder-free case is 9=8�, as per the above
analysis. We also calculated the spin polarization in the
bulk due to an applied electric field and found it to be zero.
Let /�k� �

���������
/i/i

p
. The Fermi sphere is isotropic since the

energy levels are E� � k2
2m� /. The disorder-free Green

function is G0�k; i!n� �
1
2 �s��

1�s/̂i�i
i!n�Es

, where /̂i �

/i=/. The self-energy for s-wave scattering of electrons
becomes a state-independent constant (not a matrix)
��i!n� � nimpu2

R dk
�2��2

G0�k; i!n�, where nimp is the den-

sity of impurities while u is the impurity potential strength.
Since the spin-orbit coupling is small ( � EF), the density
of states at zero order is a constant D � m=2�@2 (the term
/ � �k3 contributes with only a first order correction).
The full Green function in the presence of impurities is
G�k; i!n� � G0�k; i!n ���i!n��. The spin-dependent
part of the charge current operator Vj�k� � @H=@kj has
d-wave symmetry [for example, the spin-dependent part of
Vx is 6�kxky�x � 3��k2y � k2x��y] and vanishes when in-
tegrated over the isotropic Fermi surface. This is the deep
intuitive reason as to why the vertex correction cancels in
this case, as we rigorously show below. By contrast, in the
electron-band Rashba case, the spin-dependent part of the
charge operator is a constant. The current vertex function
Kj�k; i!n; i�m� � hG�k; i!n�Vj�k�G�k; i!n � i�m�i is a
matrix function that does not commute with either the
charge current operator or the Green function. h. . .i is an
impurity average. It satisfies the Bethe-Salpeter equation:

Kj�k;i!n;i�m��G�k;i!n�Vj�k�G�k;i!n� i�m�

�nimpu
2G�k;i!n�

Z dq
�2��2

�Kj�q;i!n;i�m�G�k;i!n� i�m�: (8)

Integrating both the righ-t and the left-hand side over the
momentum k, we see that the vertex correction
�Vj�i!n; i�m� �

R dq
�2��2

Kj�q; i!n; i�m� satisfies

�Vj �
Z dk

�2��2
G�k; i!n�Vj�k�G�k; i!n � i�m�

� nimpu2
Z dk

�2��2
G�k; i!n��VjG�k; i!n � i�m�:

(9)
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�Vj�i!n; i�m� is a 2� 2 matrix, and we decompose it in
the basis of the identity and the 3 Pauli matrices:

�Vj�i!n;i�m��
X3
2�0

�2
j �i!n;i�m��2;2�0; . . . ;3; (10)

where �0 � I2�2, the identity matrix, and �1;2;3 are the 3
Pauli matrices. The �2

j �i!n; i�m� are scalars. By introduc-
ing the decomposition in the vertex equation, multiplying
to the left of both sides of the equals by a �� matrix and
taking the trace of the above equation, we obtain

2��
j �A�j �i!n;i�m��

X3
2�0

�2
j M

�2�i!n;i�m�

M�2�nimpu2
Z dk
�2��2

Tr���G�k;i!n��2G�k;i!n� i�m��

A�j �
Z dk
�2��2

Tr���G�k;i!n�Vj�k�G�k;i!n� i�m��:

(11)

By expanding and evaluating M�2 [observing thatR
dk/i�k�/j�k� � �ij as well as GR

s GA
s � 2�6

@
���� Es�,

where R, A stand for the retarded and advanced Green
functions, and 6 � @

3=nimpu
2m] we observe that it is di-

agonal in 2, �; that is M�2 � ��2. Expanding the traces in
Eq. (11), and since /0�k� � /3�k� � 0 it is easy to observe
that (after azimuthal integration) A0j �i!n; i�m� �
A3j �i!n; i�m� � 0 and hence the vertex corrections
�0
j �i!n; i�m� � �3

j �i!n; i�m� � 0. We now have for the
vertex correction ��

j �i!n; i�m� � A�j �i!n; i�m�, � � 1; 2
and j � x; y, where after expanding the traces

A�j �
X

s;s0��

Z dk
�2��2

�
�s� s0� kjm /̂� � 2ss0/̂�

@/
@kj

� �1� ss0� @/�@kj

2�z� Es��z
0 � Es0 �

; (12)

with z � i!n � ��i!n�, z0 � i!n � i�m ���i!n �
i�m�. We now compute this for � � 1, the case � � 2
being identical. Let j � 1 and we find for the numerator
of the integrand in Eq. (12),

kykx�3k
2
x�k2y�

k3

�
�s�s0�

1

m
�6ss0�k

	
�6�kxky�1�ss0�:

This vanishes due to the integral over the azimuthal angle
of k and hence A11�i!n; i�m� � 0. For the case � � 1, j �
2, the numerator of Eq. (12) gives

k2y�3k
2
x�k2y�

k3

�
�s�s0�

1

m
�6ss0�k

	
�3��k2x�k2y��1�ss0�;

which also vanishes upon azimuthal angle integration
01680
A12�i!n; i�m� � 0. In an identical way all the components
of the vertex correction tensor vanish.

We have analyzed the spin-Hall transport in the case of a
2DHG. For relative weak confinement the spin-Hall con-
ductance is of Luttinger-type, equal to roughly 1:9e=8� for
the parameters in [17]. For strongly confined quantum
wells, the system is dominated by a structural inversion
asymmetry term of spin-3=2 SIA-type. The spin conduc-
tance for this system is 9e=8� plus finite quantum-well
size corrections. We perform the full vertex correction and
show that it vanishes for both Luttinger and SIA cases, in
striking contrast to the k-linear Rashba case, where the
vertex correction is of the same magnitude and of opposite
sign to the spin-orbit coupling strength. Coupled with the
fact that the lifetime broadening is smaller than the spin
splitting, we hence conclude that the spin-Hall effect ob-
served in [17] should be in the intrinsic regime.
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