
PRL 95, 016402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JULY 2005
Understanding the Heavy Fermion Phenomenology from a Microscopic Model
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We solve the 3D periodic Anderson model using a two impurity cluster dynamical mean field theory.
We obtain the temperature versus hybridization phase diagram. Approaching the quantum critical point
(QCP) both the Néel and lattice Kondo temperatures decrease and they do not cross at the lowest
temperature we reached. While strong ferromagnetic spin fluctuation on the Kondo side is observed, our
result suggests the critical static spin susceptibility is local in space at the QCP. We observe in the
crossover region a logarithmic temperature dependence in the specific heat coefficient and spin
susceptibility.
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The heavy fermion phenomenon is among the most
intensively studied subjects in condensed matter physics
[1]. Experimental information accumulated over the past
30 years has revealed many unconventional aspects of
heavy fermion physics [1,2].

Heavy fermion physics is derived from a local moment
band hybridizing with an extended conduction band. The
hybridization induces the competing Kondo (JK) and
RKKY interactions [3]. At JK � T, the physics is domi-
nated by those of the two bands separately with the hy-
bridization as a perturbation. As the temperature is
lowered, depending on the strength of JK, different physics
may develop. In the region where JK � W (the conduction
bandwidth), the RKKY interaction prevails. The RKKY is
a long range exchange mediated by the conduction elec-
trons near the Fermi surface and oscillates with k � 2kF
asymptotically. At T & J2K=W, the RKKY interaction can
induce a transition to a magnetically ordered phase. In the
crossover regime on this side, the Kondo behavior, though
subdominant, would still show up in various measurables
due to its nonanalyticity in terms of the energy cutoff, e.g.,
temperature. As JK is increased, the Kondo effect becomes
more important and eventually dominates. Here the Kondo
screening begins at high temperatures T � JK where the
conduction electrons near the Fermi energy starts to screen
the local f moments. If this remains so as the temperature
is lowered, there would not be enough conduction electrons
to completely screen the f moment lattice [4]. Actually, in
heavy fermions the entire conduction Fermi sea gets in-
volved in screening. As the temperature is lowered, con-
duction electrons farther away from the Fermi surface
participate in the Kondo screening. The system may then
be described, to the leading order, as a band of local mo-
ments whose magnitude is progressively reduced. These
reduced local moments still hybridize with the conduction
electrons which have not participated in the Kondo screen-
ing and live near the conduction band bottom. Hence, on
the Kondo side, the RKKY correlation, as T is lowered,
becomes more ferromagnetic (FM). The FM spin correla-
tion remains at further lower temperatures when the heavy
Fermi liquid is formed. Macroscopically, the FM behavior
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is related to the lattice Kondo energy, T0, which is propor-
tional to the Fermi energy. T0 can be defined in terms of the
saturated homogeneous spin susceptibility in the Fermi
liquid phase, 	~k�0 � C=T0, where C is the Curie constant.
Should T0 approach zero, strong FM spin fluctuation would
be observed.

It turns out that the thermodynamics related to the
continuous condensation of the local moments into the
heavy fermion fluid is quite universal [5], as contrasted
with that more material specific in the low temperature
region. At low temperatures, various phases may develop,
including a superconducting phase [1]. One interesting
possibility is that the competing Kondo and RKKY inter-
actions result in a quantum phase transition (QPT) without
the interference of any other phases. Such a situation is
observed experimentally in CeCu1�xAux [6,7] and
YbRh2Si2 [8].

Two different scenarios have been proposed for the
heavy fermion QPT. One is the Hertz-Millis-Moriya theory
[9], which is applicable when the energy scale of the
Kondo screening is much higher than that of the magnetic
ordering near the quantum critical point (QCP). As a result,
the local moments are fully screened in the quantum
critical regime. However, by comparing the predicted criti-
cal exponents with the experiments, the theory is found to
be inapplicable in many cases [1,2,7,8]. In the second
scenario, one expects the magnetic ordering (TN) and
lattice Kondo screening (T0) energies vanish simulta-
neously at the QCP [2,7] (see also [10]). Since the critical
spin fluctuations at k � 2kF and k � 0 are associated with
the TN and vanishing T0, respectively, it is interesting to
know what kind of critical magnetic mode may develop in
the neighborhood of the QCP. We will show later that near
the QCP the two critical modes strongly interact with each
other and the critical spin fluctuation becomes local in
space (see also [2]). In this scenario, the local moments
survive at the QCP.

It is important that the heavy fermion physics as we
understand be obtained from a microscopic model. To this
end the main theoretical difficulty lies in treating on equal
footing the Kondo and RKKY interactions. Many bosonic
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mean field theories, like the Hertz-Millis-Moriya [9] and
slave-boson [11] theories, fail because they rely on the
order parameter of either the magnetic or Kondo phase
and miss the properties of the other. On the other hand, a
fermionic mean field theory, like the dynamical mean field
theory (DMFT) [12], would allow the possible orders to
develop and compete and is more desirable.

The DMFT extends the Weiss mean field theory to
describe fermions. The single impurity DMFT was applied
to both the Kondo and magnetically ordered phases in
heavy fermions [13] (see also Ref. [14]). Besides the
over estimation of the Neel temperature due to the lack
of the magnetic fluctuation, this approach cannot capture
properly the renormalization of the RKKY interaction. A
partial solution to this problem is to add an RKKY inter-
action to the model and allow the renormalization of the
RKKY by extending the Weiss approximation to the inter-
action [15]. The resulted formalism, the so-called extended
DMFT (EDMFT), is able to describe qualitatively the
heavy fermions [16] in both the Kondo and antiferromag-
netic (AFM) phases. However, it predicts a first order phase
transition due to the local mean field treatment of the
RKKY interaction [16,17].

A parallel path in studying the heavy fermions is through
the two impurity problem. This model contains the dynam-
ics of both the Kondo and RKKY interactions and is
solvable [18,19]. It was shown, at the particle-hole sym-
metry, there was a non-Fermi liquid fixed point separating
the Kondo and magnetic phases. However, it is difficult to
extend the properties of a multi-impurity model to a lattice
of impurities.
01640
In this Letter, we combine the two impurity model with
DMFT so that a lattice of impurities can be described. This
overcomes the difficulties of both the single impurity
DMFT and multi-impurity approaches. It handles the
Kondo and RKKY interactions in a more balanced way.

We consider the periodic Anderson model in 3D
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The Weiss function Gf
0� is determined self-consistently as

follows. First, we use the quantum Monte Carlo method
(QMC) [20] and obtain the impurity Green’s function.
Then, from the Dyson equation for the impurities, we get
the impurity self-energy ��imp

� 
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from which we obtain the local Green’s function:

Gff
loc;��ipn��

X
~k

ipn���Ef 0

0 ipn���Ef

 !
�

V2

�ipn���
2��2~k

ipn�� �~kf�
~k�

� ~kf
�� ~k� ipn��

0@ 1A��ff
� � ~k;ipn�

2
4

3
5�1

; (4)
with f� ~k� � exp�ikx�. By identifying the local (within a
unit cell) Green’s function on the lattice with that of
the impurity model, we form a self-consistent loop
[12,21]. While solving the impurity model we can
measure the z-direction spin susceptibility 	XY��� �
hT�S

f
Z�X; ��S

f
Z�Y; 0�i, with SfZ�X� � nfX;" � nfX;#. The lattice

susceptibility is obtained in the same way as the lattice
self-energy given in Eq. (3).

We study the phase diagram of temperature versus V at
fixed U � 1:2 and Ef � �0:15. To avoid crossing the
band gap, we change the chemical potential � along with
V so that the free (U � 0) particle density per site at T � 0
is fixed at NFree

tot � 2:5423. The resulting physical density
changes slightly as V increases and is always greater than
and close to the half-filling [22]. We study the AFM and
paramagnetic (PM) phases and the transition between
them. In solving the two impurity problem we use the
QMC. We always use U�� & 1 where �� � �=L and L
is the number of time slices in QMC. In each DMFT
iteration, we perform QMC sweeps �105. Away from the
phase transitions around 10 DMFT iterations are usually
enough to converge the results. Near the phase transition a
lot more are needed due to the critical slowing down.

Figure 1 is the phase diagram we obtained. Two techni-
cal remarks are in place. First, to exam if the AFM to PM
transition is continuous, we checked the inverse static spin
susceptibilities at ~k � �(;(;(� which becomes very criti-
cal at the corresponding transition values of V [22].
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FIG. 1 (color online). The calculated phase diagram. The two
lines, TN�V� and T0�V�, do not cross at the lowest temperatures
we reached. The inset shows the low temperature saturation of
the static homogeneous spin susceptibility at V � 0:28.
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Second, the crossover temperature T0 is obtained using the
saturated static homogeneous spin susceptibility 	� ~k �
0; i0� ! C=T0 at low temperatures. [We used Curie con-
stant C � 1=2 which is obtained in the high temperature
limit.] An example of the saturation behavior is shown in
the inset of Fig. 1. Note that T0 being small means the FM
spin fluctuation becomes very strong.

To study the critical magnetic fluctuation around the
QPT, we plot in Fig. 2 	AA�i0� and 	AB�i0�. From the
result we see that 	AB�i0� changes sign when V increases.
This sign change is actually a special manifestation of a
more general evolution of the RKKY correlation from
being AFM to FM as hybridization is increased, due to
the conduction electrons mediating the RKKY change
from those near the Fermi surface to around the band
bottom. Meanwhile, 	AA�i0� is always positive and be-
comes very strong in the crossover regime. This scenario
should extend to T � 0 and there would be a point at which
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FIG. 2 (color online). The local, 	AA�i0�, and nearest-
neighbor, 	AB�i0�, spin susceptibilities at � � 120 versus V.
	AA�i0� is always positive and shows a peak in the crossover
region. 	AB�i0� changes from negative in the AFM phase to
positive in the Kondo phase. We multipled 	AB by the coordi-
nation number which reflects its contribution to the lattice spin
susceptibility.
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	AB�i0� � 0 and 	AA�i0� becomes critical. This point
would be the heavy fermion QCP. Note that the static
spin response being local does not mean a local electron
self-energy. Actually, the nonlocal self-energy becomes
stronger at lower temperatures [22].

An important question is how the Kondo screening,
which is local in space, becomes coherent in heavy fermi-
ons. To this end, we study the evolution of the spatial
correlation in the spin responses in Fig. 3. It shows that
spin fluctuations are quite local in space down to T � 0:1
for V � 0:26 and T � 0:2 for V � 0:50. At lower tempera-
tures, the FM spin susceptibility becomes dominant. This is
similar to that observed experimentally in YbRh2Si2 [23].
Two remarks are in place. (1) the nonlocality in 	 develops
at lower temperature for V � 0:26 than that for V � 0:50.
This reflects the local nature of the spin fluctuation in the
quantum critical region which extends to lower tempera-
ture as the QCP is approached and is consistent with Fig. 2.
(2) The logarithmic temperature dependence of 	 as shown
in Fig. 3 is similar to those observed in many heavy
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FIG. 3 (color online). The static spin susceptibilities as func-
tions of the temperature at (a) V � 0:26 and (b) V � 0:5. The
fittings are given by 	�T� � 7:399 ln�0:253=T� in (a) and
	�T� � 1:314 ln�1:218=T� in (b). Note that according to Fig. 1
V � 0:26 is close to the QCP on the Kondo side.
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fermion compounds [1]. A logarithmic temperature depen-
dence is also found in the total energy shown in Fig. 4.

To conclude, using a two impurity DMFT, we studied
the periodic Anderson model on cubic lattice at finite
temperatures. We obtained the phase diagram which is
consistent with the picture that both the Neel and Kondo
temperatures vanish at the QCP. As the QCP was ap-
proached from the Kondo side, we found strong ferromag-
netic spin fluctuations. From the sign change of the static
nearest-neighbor spin susceptibility, we conjectured that
the critical static spin fluctuation become local at the heavy
fermion QCP. We explored the crossover region and ob-
served logarithmic temperature dependences in the specific
heat coefficient and spin susceptibility.

Our results presented in this Letter imply that a two
impurity Anderson model combined with DMFT might
serve as a minimal model in describing most of the ther-
modynamics of the heavy fermions. However, we should
also keep in mind that there could exist other phases, like
the superconducting phase [24], whose existence may
require mechanisms which are more spatially extended
than those describable in a two impurity model.

Since the 4f or 5f orbital contributes to the local mo-
ment physics in most heavy fermion compounds, there are
inevitablely many physical properties oversimplified by
the periodic Anderson model, like the orbital degeneracy
and the subsequent crystalline field splitting. These are
further complicated by the spin-orbital coupling, lattice
frustration, disorder, hybridization with other bands, etc.
Actually all these contribute to a much richer physics
observed in experiments [1] than we have obtained. To
this end, our current work can be considered as a useful
guide to distinguish the ‘‘universal’’ heavy fermion fea-
tures from those specific to individual materials.
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