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We study a kinetically constrained lattice glass model in which continuous local densities are randomly
redistributed on neighboring sites with a kinetic constraint that inhibits the process at high densities, and a
random bias accounting for attractive or repulsive interactions. The full steady-state distribution can be
computed exactly in any space dimension d. Dynamical heterogeneities are characterized by a length
scale that diverges when approaching the critical density. The glassy dynamics of the model can be
described as a reaction-diffusion process for the mobile regions. The motion of mobile regions is found to
be subdiffusive, for a large range of parameters, due to a self-induced trapping mechanism.
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One of the most important features of glassy dynamics is
its heterogeneous character, that is, the coexistence of
slowly and rapidly evolving regions, with a characteristic
size significantly larger than the molecular scale. Such
dynamical heterogeneities, which are often due to a jam-
ming phenomenon (like, for instance, in colloids or in
granular materials), have been observed recently both in
experimental systems [1-3] and in numerical simulations
[4-6]. In order to model these effects, a fruitful path,
which has attracted considerable attention in recent years,
is to introduce ‘‘kinetically constrained models” (KCMs)
with a very simple (usually one body) Hamiltonian. Steric
constraints are taken into account through kinetic rules that
forbid some transitions between microscopic states [7].
The study of these KCMs has emphasized the role played
in the relaxation process by rare and localized regions
(often called mobility excitations or defects) that are not
completely blocked by the constraints [8—10]. These mo-
bility excitations diffuse throughout the system, eventually
leading to full decorrelation. This simple relaxation
mechanism suggests a somewhat universal dynamical be-
havior, as advocated in [11]. Whether or not this picture
applies to all glasses, it relies on the assumption that
mobility excitations follow a purely diffusive motion,
which is not justified on general grounds, as we shall
demonstrate below.

In this Letter, we consider a new KCM in which the local
variable is a continuous density, rather than a discrete
variable as in most studied KCMs. The interest of the
present model, compared to previously studied KCMs, is
two-fold. First, the statics of the model is nontrivial, and
can be characterized exactly. The stationary N-body dis-
tribution turns out to be factorizable for all values of a
parameter that describes the (repulsive or attractive) inter-
action between particles, which has no counterpart in other
KCMs. Second, the presence of continuous local densities
leads to an interesting dynamical behavior; the motion of
mobility excitations is found to be subdiffusive for a large
parameter range, due to a self-induced trapping mechanism
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(i.e., not introduced by hand in the model). Accordingly,
dynamical heterogeneities with a rather rich spatial struc-
ture are observed. The model is defined on a lattice of
arbitrary dimension d with N sites. In each cell centered on
the lattice site i, we define p; as the density of particles.
The dynamics, aimed at describing density fluctuations,
corresponds to a local redistribution of particles across the
links of the lattice. At each time step At = 7y/N (7 is a
microscopic time scale), two neighboring sites (j, k) are
chosen at random, and p; and p; are redistributed to
become p’; and py:

0<¢g<l.
(D

Note that the mass p; + p is exactly conserved at each
step. The fraction ¢ is a random variable, chosen indepen-
dently both in space and in time, with distribution #(q)
such that (1 — g) = ¥(q), that plays the role of internal
noise in the model. We want to model the fact that a locally
dense packing is blocked unless some low density cell is
present in its vicinity. A simple kinetic constraint is to
allow redistribution only when p; + p, <2py; in the
following, we set py, = 1. Thus for large densities, the
system is no longer able to reorganize locally. One can
expect that if the average density is high, the dynamics
slows down dramatically and exhibits glassy behavior.
Note that if initially p9 <2 for all i, the evolution rules
forbid any density p; > 2 at later times.

In order to find an exact solution for the stationary state,
we choose a beta distribution /(g) = T'(2u)/T'(u)*[g(1 —
g)]*~ 1. The case u = 1 corresponds to a uniform redis-
tribution and may be thought of as noninteracting particles
(except from hard-core repulsion). The case u < 1 favors
q close to zero or to one, and can be interpreted as an
effective attraction. Conversely, w > 1 favors the maximal
mixing value ¢ = 1/2, and mimics repulsive interactions
and suppressed density fluctuations. Note that a model
similar to (but different from) the present model has been
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studied numerically in the specific case u = 1 [12]. From
the Master equation describing the model, one sees that a
nontrivial form of detailed balance holds [13], leading to
the exact stationary N-body distribution:
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where p is the average density. The above explicit solution
is one of the central results of this Letter. It shows that the
stationary distribution is generally not uniform among all
available states. This must be contrasted with the Edwards
prescription, often used for generic jamming problems,
which only holds when p = 1. Note that the above
steady-state distribution is obtained in the long time limit
only if, as noted above, all the initial densities {p?} are less
than 2 and at least some links initially satisfy p9 + pf <2
(otherwise no redistribution can occur at all). From Eq. (2),
the “canonical” distribution P,,({p;}), describing a sub-
system with K sites, can be derived in the limit 1 < K <
N [13]:
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with B = —N"'9InZy/dp. The one-site distribution is
thus given by p(p) = cp* 'ePP, with 0 <p <2 and
Zgn = ¢~K_ In order to characterize more quantitatively
the glassy properties of this model, we compute the frac-
tion 7 of mobile links, defined as links (j, k) such that p; +
Pr < 2. In the canonical steady state, n is computed as:
n = [5dpy [5dp2p(p1)p(p2)0(2 — p; — p,) and can be
evaluated numerically. In the limit p — 0, the kinetic con-
straint does not play any role and 7 — 1. In the more
interesting limit p — 2, the density of mobile links devel-
ops an essential singularity:

_ 2l(w)?
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Thus the fraction of mobile links decreases very fast for
p — 2, but remains finite for any average density p < 2,
suggesting that the critical density is p, = 2, as will be
confirmed in d = 1 below. This situation is indeed remi-
niscent of what happens in the Kob-Andersen model [14]
in d = 2, in which the diffusion coefficient D goes to 0
with the particle density p as: InD ~ (1 — p)~! [15].

All the above analytical results concerning static quan-
tities are valid in arbitrary dimension d. In the following,
we present detailed numerical simulations of dynamical
quantities in dimension d = 1, and discuss briefly the case
d =2, where dynamical quantities appear to be more
complex. The relaxation properties of the model can be
quantified by introducing on each site i a function ¢;(z),
that we choose for simplicity to be the local persistence:
¢;(t) = 1if p; has never changed in the time interval [0, 7],
and ¢;(t) = 0 otherwise. One can then introduce a global

e~2/2=p), (4)

correlation function ®(¢) = [{(¢,(¢))], where {...) and [...]
denote averages over the sites and the noise, respectively.
Defining the characteristic decay time 7 through ®(7%) =
1/2, one can rescale the data by plotting ®(r) against 1/7*
[Fig. 1(a)]. The relaxation time 7" is plotted as a function
of p for different u in Fig. 1(b). Interestingly, ® () behaves
as a stretched exponential: — In®(r) ~ (¢/7*)?, as typical
in glassy systems [Fig. 1(c)]. The exponent y matches
perfectly the conjecture vy = v, where v is defined from
the subdiffusion of mobility defects: r?(¢) ~ t2¥ —see
below.

Can a nontrivial cooperative length scale be associated
with the increased glassiness as p — 27 ? Clearly, since the
stationary distribution is factorized, no static correlation
length can grow in this regime. Thus such a length scale
can only appear in dynamical quantities, such as four-point
correlation functions that have been studied recently to
describe dynamical heterogeneities [10,16—18]. In physi-
cal terms, these dynamical heterogeneities can be inter-
preted as the appearance of ‘“fast” and ‘“‘slow” regions,
with a typical size that grows as the glass transition is
approached. More precisely, one can introduce on each
site ¢ a local variable ¢} = ¢;(7"). This allows one to
define slow sites, such that ¢; = 1, whereas fast sites
have ¢; = 0. This particular choice of ¢; ensures that
fast and slow regions occupy equal volumes. To identify
quantitatively the characteristic length scale € of dynami-
cal heterogeneities, we study the fourth (Binder) cumulant
B(p, L) of the random variable w = L™93,;¢%, where the
sum is over all sites of a system of size L [17]. This
quantity measures the ‘“‘non-Gaussianity” of w; it is zero
for large systems, L > €, and equal to a certain constant
(2/3 with Binder’s normalization) for L << €. Using finite
size scaling arguments, one expects B(p, L) to scale as a
function of €/L. We indeed find in the present model that

FIG. 1. (a) Time correlation d(r) versus t/7* for p = 1.60 to
1.72 (u = 1). (b) 7* as a function of p, for u = 0.3 (<), 1 (O), 2
(+) and 3 (A). (c¢) Stretched exponential behavior of ®(r) with
u =2, and exponent v determined from r*(¢) (dashed line).
(d) Dynamic scaling 7* versus £ = 1/7(p, w) [same symbols as
(b)]; dashed line: exponent z = 1/v (z = 2 for u = 0.3).
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all data rescale perfectly when plotted as a function of 7L
[Fig. 2]. Thus ¢ is simply the average distance 1/7n be-
tween mobile links. It is then natural to look for a scaling
relation 7* ~ €% between the relaxation time and the coop-
erative length, where z is a dynamical critical exponent; 7*
is plotted as a function of € = 1/ on a log-log scale in
Fig. 1(d). Interestingly, the relation between 7* and ¢ is
found to depend strongly on u; for & = 0.3, 2, and 3, the
data is well fit by a power law for € > 1, whereas for u =
1, some systematic curvature appears.

As mentioned in the introduction, the high density dy-
namics can be described in terms of reaction diffusion of
mobility excitations [8]. When a redistribution occurs on a
given link, the “‘state’” of the link (mobile or not) cannot
change, due to mass conservation. However, neighboring
links can change state since the mass associated to these
links is not conserved by this redistribution. So it is pos-
sible to create or destroy a mobile link when it shares a site
with another mobile link. Denoting mobile links by A and
immobile links by @, one can write schematically these
processes as (A4, @) — (A, A) and (4, A) — (@, A), whereas
the simple annihilation process A — @ is forbidden by the
conservation rule. Moreover, a chain of two such transi-
tions is equivalent to the motion of a “defect” A. At high
density p, i.e., at low concentration of mobility, branching
and annihilation of mobility excitations become rare, and
mobility motion is the dominant relaxation mechanism (for
a related discussion, see [11]).

If the motion of mobility excitations was purely diffu-
sive, as r2(f) ~ Dt, with a diffusion constant D that re-
mains nonzero as p — 2, then 7* would scale with € as
7 ~ €2,i.e., z = 2. This scaling law is not compatible with
the data shown in Fig. 1(d), at least when w = 1. Such a
discrepancy could come from a critical dependence of the
diffusion constant D on p. This mechanism is indeed at
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FIG. 2. Inset: plot of B(p, L) as a function of p for different
values of L (u = 1). The curves do not cross, except presumably
for p =2. Main plot: B(p, L) plotted as a function of the
rescaled variable 1/(nL). The collapse is very good, showing
that the characteristic length scale € is proportional to the inverse
of the concentration 7 of mobile links.

play in the Fredrickson-Andersen model in d = 1, leading
to z = 3 [10]. However, the mechanism operating in the
present model is different, and related to a genuine sub-
diffusive motion of individual defects. We show in
Fig. 3(a) the mean-square displacement r2(f) of mobility
excitations for several values of w. The motion of mobility
is found to be subdiffusive for a whole range of parameter
M, which we estimate to be w = 1 (finite time effects
induce some uncertainty on this threshold value). The
exponent v characterizing the asymptotic power-law re-
gime 72(1) ~ D(p)7*” is shown in Fig. 3(b) where v is
independent of p at high enough density. This relation
suggests > ~ D(p)7*?"; neglecting the dependence of D
on p leads to z = 1/». Using the measured values of », one
can compare this prediction with the direct evaluation of z
on Fig. 1(d) for u = 2 and 3 (dashed lines). The agreement
is quite good, although some discrepancies appear, pre-
sumably due to the density dependence of D. For u = 0.3,
one recovers the standard exponent z = 2. The subdiffu-
sive motion of mobility also accounts very well for the
stretched exponential behavior of ®(z). At short time (r <
7), the correlation should behave as 1 — ®(r) ~ r(r)/¢,
i.e., as t”. Thus ®(z) is well approximated by a stretched
exponential with exponent v, which indeed matches per-
fectly the numerical data even for t ~ 7*—see Fig. 1(c).
Interestingly, the dynamics of mobility can be mapped onto
a one-dimensional barrier model [19], since the processes
(2,A,2)— (2,A,A) and (2, A, @) — (A, A, @) involve
waiting times which become broadly distributed when
p — 2 [13]. The absence of quenched disorder suggests
to consider an annealed model, where each random barrier
is drawn anew after a jump. This would lead to » = 1/u
for p > 2 [13,19], which does not match the numerical
data [Fig. 3(b)]. But as the environment of a mobile link is

0.1

FIG. 3. (a) Mean-square displacement r2(¢) for u = 0.3,0.6, 1,
1.4, 2, 3,4, and 5 (top to bottom) and p = 1.75; dashed line:
slope 1. (b) Exponent v defined by r2(f) ~ ¥ (O), annealed
(dotted line) and quenched (dashed line) barrier models predic-
tions. (c) Rescaled correlation G,(k, 1) against kt* (p = 1.60,
p = 2). (d) Rescaled susceptibility x,(r)/x; versus t/7* for
p = 1.50, 1.55, 1.58, and 1.60 (n = 2); dots: slope 2.
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FIG. 4. Direct visualization of dynamical heterogeneities with
the variables ¢7, for p = 1.50, 1.65, 1.75 (left to right) in a
system of size N = 100?> (u = 1). Only black sites (¢} = 0)
have changed state between ¢t = 0 and 1 = 7*. The typical size of
both types of regions clearly increases with density.

frozen for times of the order of 7", the quenched barrier
model might be more appropriate. Indeed, the correspond-
ing prediction » = 1/(1 + w) for w > 1 is in rather good
agreement with our numerics. Therefore, the existence of
slow regions induces nontrivial correlations that mimic the
presence of quenched disorder, which is actually “self-
generated.”

A more detailed description of the heterogeneities is
provided by the following (four-point) correlation:

Gy(r, 1) = [(i()bi1, (1)) — (i(DX i, ()] (5)

or its Fourier transform G,(k, 7). One expects the rescaled
correlation G4(k, 1) = G4(k, 1)/ (t*G,4(r = 0, 1)) to scale as
a function of k#” [20]. The corresponding data are plotted
on Fig. 3(c), showing a reasonable collapse. Integrating
G,(r, 1) over r yields the dynamical susceptibility y.(7),
which encodes some important information on the dynam-
ics of the system [20]. Figure 3(d) displays x4(z)/ x; versus
t/7* for different p, where yxj is the maximum of y,(7), and
7" has been determined from ®(r). The resulting collapse
is rather good, although very long times would be needed
to test quality of the collapse for 7 >> 7*. At short time
(t < 7), the data converge very slowly when p — 2 to the
predicted power law y,(f) ~ > [20], indicating strong
subleading corrections.

Let us briefly discuss the qualitative behavior of the
model in two dimensions—a fuller account will be given
in Ref. [13]. It is interesting to visualize the variables ¢
for a given realization of the dynamics. This is done on
Fig. 4, for densities p = 1.50, 1.65, and 1.75. The typical
size of the fast and slow regions is clearly seen to increase
with p. A strong asymmetry appears: slow regions are
essentially compact, whereas fast regions seem to develop
a fractal structure when their size increases. Numerical
results (not shown) indicate that in dimension d = 2, the
cumulant B(p, L) cannot be simply rescaled by the typical
distance 7~ !/2 between mobility defects. Instead, an ap-
proximate rescaling can be obtained using € ~ 1~ ¢, with
a =~ 0.35. Mobility excitations exhibit a subdiffusive re-
gime for u > 1 and short times, before crossing over to
pure diffusion. Such a crossover is not observed in d = 1,
where subdiffusion seems to hold at all times.

In summary, we have analyzed a new class of KCMs
with a conserved, continuous density field, and a parameter
M accounting for interaction between particles. Although
nontrivial, the statics of the model can be worked out
exactly. Our main result is that the motion of mobility
excitations is subdiffusive for a large range of u, due to
the presence of self-induced disorder. The subdiffusion
exponent varies continuously with w, thus ruling out the
possibility of describing the glassy dynamics in this model
in terms of standard directed percolation. An analytical
understanding of the subdiffusive process, for instance
through a renormalization approach [21], would be highly
desirable. Besides, experimental investigations of the
(sub)diffusion of mobility would also be of great interest,
and systems like sheared granular cells, where subdiffusive
motion of tracer particles has been reported [22], may be
promising candidates for such studies.
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