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Asymptotic Evolution of Weakly Collisional Vlasov-Poisson Plasmas
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We study the role of (weak) numerical diffusion on the long time evolution of the Vlasov-Poisson
plasma. We consider the classical problem of phase space vortex formation by particle trapping. We show
that the asymptotic macroscopic state is not independent of diffusion even if the dissipative length scale is
much shorter than any characteristic physical length scale of the system.
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The weakly collisional nature of many space and labo-
ratory plasmas is a key point in theoretical modeling of
plasma dynamics. These plasmas are typically rarefied
and/or at high temperatures, so that the efficiency of colli-
sions in bringing the particle distribution function (DF)
close to a Maxwellian is reduced. The non-Maxwellian
nature of the DF has been directly measured in the solar
wind. In this case, the fluid description is inadequate and a
kinetic description of the plasma must be introduced.

In the collisionless kinetic regime, the basic equation is
the Vlasov equation self-consistently coupled to the elec-
tric and magnetic field equations. Concerning the role of
collisions, in the electrostatic limit important results were
obtained in the weakly collisional regime (�c � !pe)
where collective motions are unchanged, but nevertheless
the role of collisions is essential since it strongly affects the
free-streaming (ballistic) motion of the particles. This was
first pointed out by Gould, O’Neil, Malmberg, and
Wharton in the analytical and experimental work on
plasma echoes generation by plasma wave pulses [1],
where they suggested the echoes phenomenon as a tool
for the study of collisional relaxation processes in plasmas.
In the same years, Su and Oberman [2] demonstrated
analytically, by using the simplified Fokker-Planck–type
collision term of Lenard and Bernstein [3], that phase
mixing and velocity phase space diffusion inducing colli-
sional damping of free-streaming motion, can be so rapid
both in space and time such as to prevent the possibility of
generating plasma echoes. Later on, by using the same
electron-electron collision operator, Skiff et al. [4] gave
experimental and theoretical evidence on the existence of
an intermediate regime where the spectrum of the low-
frequency electrostatic ion waves is changed by collisions.
In this context, recently Bhattacharjee et al. [5] have shown
that in a weakly collisional plasma the Case–Van Kampen
eigenmodes [6] of a collisionless plasma are replaced by a
discrete spectrum (which form a complete set) giving the
Landau damping results [7] in the limit of no collisions.

The theoretical study of collisionless plasma dynamics
makes use, more and more, of large scale numerical simu-
lations of the Vlasov equation with an Eulerian approach
by using the so-called Vlasov codes (the Lagrangian ap-
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proach, PIC codes, will be not discussed here). Starting
from the pioneering studies of Ref. [8], the impressive
development of computer power of these last years has
allowed one to perform high resolution simulations in the
electrostatic limit [9–11]. However, any long time numeri-
cal study of the Vlasov equation is unavoidably faced with
the problem of small scales generation. As soon as the
typical length scales of the fluctuations become compa-
rable to the grid size, numerical dissipation comes into play
leading the system to violate the conservative constraints
of Hamiltonian dynamics and to reconnect close isolines of
the DF. This process, formally forbidden, is well high-
lighted by the time evolution of the system invariants Ni �R
fidxdv, i � 2 and by the ‘‘entropy’’ S �

�
R
f ln�f�dxdv (here f is the DF; note that N1 is exactly

conserved for the used algorithms), which show sudden
variations when, for example, a ‘‘closed’’ vortex is formed
in phase space as a consequence of electron trapping by the
wave electric potential. To overcome this problem, the
typical argument relies on the conjecture that if the dis-
sipative scale is much smaller than any macroscopic physi-
cal length scale of the system, dissipation has no feedback
on the macroscopic asymptotic evolution of the system.

The role of dissipative effects on the asymptotic evolu-
tion of a collisionless system is related to the existence of
equilibria solutions corresponding to different energy
states. In the case of a Vlasov-Poisson 1D system, it is
known that a ‘‘large’’ set of Bernstein-Greene-Kruskal
(BGK) stationary solutions [12] exist corresponding to
the formation of phase space vortices of different size
and different mean values of the electric field amplitude.
The dynamical transition from an initial Maxwellian to a
final BGK-type state (hereafter just BGK), can be justified
by saying that the closed isolines are a coarse graining view
of the DF and that the energy difference between the initial
and the final states is stored on the very small DF oscil-
lations. After the formation of the BGK structure, the
evolution is again collisionless up to any new effect trying
to destabilize the BGK state. Since the dissipative mecha-
nism is responsible for the closure of the DF lines leading
to the formation of vortex structures, dissipation influences
the number and distribution of trapped particles in the
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FIG. 1. First frame: the time evolution of the third invariant
N3. The three dot-dashed, continuous, dashed, and dot-dashed
lines correspond to runs A to D, respectively. Second frame: the
time evolution of the entropy (same style).
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vortex [13] and so the asymptotic macroscopic state of the
system, even if the diffusive length scale is the smallest
characteristic length scale at play.

We consider the standard problem of ‘‘nonlinear Landau
damping’’ (NLD) [14] in the regime where the bounce time
�B is comparable to the Landau time �L (see Ref. [15] and
references therein). In this case particle trapping stops the
Landau wave-particle collisionless damping [16] leading
to the formation of phase space electron holes which have
been identified as finite superposition of traveling BGK
waves [17]. For initial amplitudes larger than a critical
value �� separating the damping (or Landau) and the non-
damping (or O’Neil) regimes [18], the asymptotic state is
characterized by a constant electric field amplitude oscil-
lating around a mean value with a characteristic period �LF

much longer than the trapping time [9,10]. The long time,
low-frequency oscillating regime has been very recently
analyzed in detail by Valentini et al. [19] using the
Lagrangian trajectories of particles in the resonant region.
They showed two main electron populations: the chaotic
one, located nearby the separatrix characterized by phase
space flightslike trajectories, and the trapped population
performing a nonergodic dynamics. They conclude that the
complex interplay between these two populations is re-
sponsible for the asymptotic low-frequency oscillating
evolution as a consequence of a ‘‘trapping-detrapping’’
mechanism; furthermore, they claimed that the (most prob-
able) flight duration is connected with the low-frequency
period, �LF � 120, observed in the simulation. However,
we see here that diffusive effects, not considered in
Ref. [19], are crucial to determine the number and the
phase space distribution of the resonant (and nearby) par-
ticles and so to estimate �LF. The NLD problem has also
recently been investigated in the paper by Ivanov et al.
[20], where the study on the transition between the damp-
ing and nondamping regimes has been revised with a phase
transition approach. Reference [20] is also based on a very
fine analysis of long time Vlasov-Poisson numerical simu-
lations, but again the possible role of dissipative effects has
been neglected.

By using a II order (VL2) or a III order (VL3) Vlasov
code [21], which exactly conserves the total charge, we
integrate the 1D-1V Vlasov-Poisson system of equations
(normalized to electron characteristic quantities):

@fa=@t�v@fa=@x��@�=@x@fa=@v�0; a�e;p;

@2�=@x2 �
Z
�fe�fp�dv; E��@�@x;

fe�x;v;0�� �1=�
�������
2�

p
vth�e

��v2=2v2
th�
1��cos�kx��;

with � � 0:05, k�D � 0:4, � � �me=ma, �5 
 v=vth 

5, and Lx � 5��D. Periodic boundary conditions are used.
The dimension of the numerical box is chosen in order to
have stable vortices since for Lx > 2�=k the sideband
instability [22] could develop in some circumstances
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[10]. In the following, we present the results of one VL2
run (A) and three VL3 runs (B, C, D), all starting with the
same initial conditions, but from A to D with decreasing
numerical diffusion; we use Nx � 128, Nv � 701 mesh
points in runs A and B, Nx � 256, Nv � 1401 in run C,
Nx � 512, Nv � 2801 in run D. Roughly speaking, the
numerical diffusive length scales are of the order of the
mesh size, 0:03 
 dx 
 0:12, 0:0035 
 dv 
 0:014,
while the phase space characteristic scales are the Debye
length, �D � 1, the electron thermal velocity vth;e � 1, the
perturbation wavelength, � � 5��D, the vortex dimen-
sions, lx ’ 12�D, lv ’ 1vth;e. To summarize, run A is the
most dissipative (remember that the VL2 algorithm is more
diffusive than VL3), and run D is the least dissipative. The
numerical recurrence time [23], Trec � 2�=�k�v�, is al-
ways (much) longer than the final time of the simulation. In
Fig. 1, first frame, we show the third invariant N3 vs time.
In all cases, the invariants are constant in the initial and
asymptotic phase of the evolution (except for run A which
continues slowly to decrease asymptotically). In corre-
spondence with the vortices’ formation, a sudden jump is
observed which is delayed more and more as dissipation is
reduced. The asymptotic value of the invariants decreases
as dissipation increases. This behavior is typical of
Hamiltonian plasma simulations, as, for example, in the
case of collisionless (fluid) magnetic reconnection in cor-
respondence with magnetic islands formation. In Fig. 1,
second frame, we show the time evolution of the entropy S.
We again observe a strong variation of S as soon as the DF
isolines start to diffuse, later for the less dissipative case,
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run D, and S again becomes nearly constant in the asymp-
totic limit. We emphasize that the entropy difference be-
tween runs A and D at the final time, �SA;D � SA � SD, is
comparable to the total entropy variation �SD of run D
(i.e., between the initial and the final times): �SA;D ’
0:23�SD. In Fig. 2 we show, for runs B and D, the phase
space vortices (the same contour levels) centered around
the resonant velocity. The vortices are characterized by
finer and finer ripples as diffusion is reduced. We have
calculated the number of particles contained in each vortex
by defining the separatrix as the largest closed contour
level. Inside each separatrix we have integrated the distri-
bution function and normalized to one the total number of
trapped particles of run D, nvort

D � 1. The maximum nu-
merical error due to different grid resolution is estimated of
the order of �1%. We found nvort

C � 0:87, nvort
B � 0:83,

and nvort
A � 0:57. In Fig. 3 we show two plots of the DF at

t � 650 in the resonant region at v � 3:14 vs x and at x �
7:85 vs v. The thicker continuous line and the continuous
line refer to run B and run D, respectively. The dashed and
dash-dotted lines are obtained after smoothing (with a
Fourier or with a finite differences technique) the run D
vortex on a phase space cell size dx� dv comparable to
that of run B. We see that the strong gradients are some-
what reduced by the smoothing, but that the (dashed)
smoothed lines are still very different from that of run B
corresponding to a significant different distribution of the
trapped particles in the vortices. Therefore, the run B
vortex cannot be considered as a coarse grained view of
the run D vortex. This difference is even more evident
FIG. 2. The shaded isocontour of the DF of runs B and D in a
strip of the phase space centered around vres ’ 2:9.
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when compared with the vortex of run A. We conclude
that vortices obtained with a different diffusion coefficient
do not commute by a posteriori diffusive smoothing. The
signature of the difference between the asymptotic states
can be seen on the electric field amplitude evolution shown
in Fig. 4 (here only runs B and D are shown) where we
eliminated the high frequency oscillations. We found �lfA ’

46, �lfB ’ 40, �lfC ’ 67, and �lfD ’ 75. We note that in Ref. ,
with a VL2 scheme and Nx � 512, Nv � 1601 (all other
parameters equal), they get �LF ’ 120. By performing
other VL2 and VL3 simulations (not reported here), the
trend of an increasing low-frequency period with increas-
ing resolution is observed for both the VL2 and the VL3
algorithms. This trend is in agreement with the trapping-
detrapping mechanism proposed in Ref. [19] since increas-
ing the resolution corresponds to decreasing the possibil-
ities of diffusing around the separatrix (i.e., the system
becomes more and more collisionless). Therefore, in the
limit of no dissipation (infinite resolution) the electric field
amplitude should eventually be constant. As a conse-
quence, the NLD problem can be considered as a fine
numerical test for long time simulations with kinetic codes.
Finally, we observe that the min or max value of the
electric field amplitude in runs A to D are significantly
different.

In summary, we have presented numerical evidence on
the importance of dissipative effects in a Vlasov-Poisson
FIG. 3. The DF (t � 650) at v � 3:14 vs x, first frame, and at
x � 7:85 vs v, second frame, for run B (continuous thick line),
run D (continuous line), run D smoothed with Fourier and with
finite differences, dashed and dot-dashed lines, respectively.
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FIG. 4. The low-frequency time evolution of the electric field
amplitude, runs B and D.
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plasma. In our study dissipative effects are given by the
computational discrete mesh and by the choice of the
numerical algorithm. Our results are in qualitative agree-
ment with those of Ref. [5] in the sense that, even if the
collective dynamics is unchanged in the presence of weak
collisions, nevertheless the variation on the small scale
fluctuations can have important feedback on the asymp-
totic large scale dynamics. In agreement with Ref. [13], we
found that the closure of the DF lines driven by dissipative
effects has a qualitative and quantitative influence on the
distribution of the trapped particles and so on the asymp-
totic BGK-like state of the system. This is due to the lack in
the Vlasov-Poisson system of a microscopic length scale
controlling the physics between the macroscopic structures
and the dissipative scale. A different behavior is found
when considering the collisionless magnetic reconnection
problem driven by electron inertia (with ldiff � de). In that
case, at least in a regime where the equations are mathe-
matically similar to the Vlasov-Poisson system [24], we
found [25] that long time magnetic island pulsations are
independent of the grid resolution (at least in the limit of
computer resources) due to the inertial length scale which
controls the microphysics of the reconnecting layer.
Finally, we note that, even if numerical diffusion plays a
role in the macroscopic long time behavior of the system,
our results confirm that there are no indications of wave
amplitude decay in the long time nonlinear evolution (pro-
posed in Ref. [26]), as recently pointed out analytically
[18,27] and numerically [9].
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