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Grad-Shafranov Equilibria with Negative Core Toroidal Current in Tokamak Plasmas
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Numerical Grad-Shafranov (GS) equilibria with negative current density in the plasma core are
computed which do not impose any particularly chosen models for the pressure and current-density
profiles. This flexibility allows the profiles to be tailored so that an island unfolds in the low-field side,
even for elongated plasmas, thus sustaining the negative-current core against outward forces. Among
other topological results, reversed GS equilibria are also shown to be necessarily non-nested, except for
the cylindrical and other very special degenerate, hence structurally unstable cases.
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Driving of large off-axis, noninductive plasma current in
tokamak experiments has led to improved confinement
regimes, with strongly reversed magnetic shear and nearly
zero toroidal current density near the magnetic axis [1,2].
Although current-drive power often suffices to decrease the
core current density further into negative values, available
data shows the latter to be clamped at zero, possibly due to
axisymmetric reconnection events [3,4]. This attracted
considerable discussion in the fusion community about
possible Grad-Shafranov (GS) reversed equilibria, with
negative toroidal current density flowing in the core and
overall positive plasma current. Inducing a poloidal-field
reversal (PFR) layer, for which the tangential magnetic
field and the enclosed toroidal current do vanish, such
equilibria were deemed impossible [5]. After suitable re-
visions, nested reversed equilibria have been claimed to be
possible but isolated and structurally unstable, in the sense
that any slight change in boundary conditions would cause
their destruction [6]. Subsequently, it was recognized that
non-nested configurations could sustain a negative-current
core [7], this being supported by GS solutions for particu-
larly chosen pressure and current-density models [8,9].
Despite their role in asserting that GS equilibria can exhibit
current reversal, these works are rather limited in scope,
their reliance on particular models hindering the extrapo-
lation to reactorlike plasmas and obscuring the underlying
physics, whence the need to tackle more general profiles.
Indeed, existing numerical solutions can only cope with
flat pressure and current-density profiles [8], whereas
known analytical solutions are restricted to quite stiff
models that force negative current densities also in regions
other than the plasma core [9].

In this Letter, some relevant features of GS equilibria
with toroidal current reversal are discussed. First, nested
configurations are shown to be special degenerate cases,
their isolated character being the key to understanding why
structurally stable, realizable, nonsingular solutions are
necessarily non-nested. Next, a perturbative GS equilib-
rium solver [10], able to deal with realistic pressure and
current-density profiles, is adapted to handle the PFR layer,
providing insight about the problems due to a vanishing
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poloidal field inside the plasma. Namely, it is shown that
pressure and poloidal-field input profiles cannot be arbi-
trarily chosen. More, it is found that the usual resilient
current-density distributions [11-13] are not allowed,
which may account for reconnection events aiming to
eliminate the negative current and drive the equilibrium
towards a nested, nonreversed configuration. Still, and as
previously hinted [14], such events can be countered by a
suitably shaped internal separatrix, which is achieved be-
low by tailoring the pressure and poloidal-field input pro-
files. In the following, standard notation will be used, with
superscripts B and subscripts B; denoting, respectively,
contravariant and covariant components of a given vector
B = B(l‘)e i
Let ¢(r, 0; €) be a solution of the GS equation

—RV - (R7?Vy) = —Jy(r,0) = Rp(p) + Y() (D)

for a given value of the inverse aspect ratio ¢ = a/R,,, with
a and R, the tokamak minor and major radius, respectively,
the dot denoting flux derivatives d/dy and the normalized
poloidal-field flux , plasma pressure p(i), squared poloi-
dal current Y(¢), and toroidal current density J4), along
with the toroidal coordinate system (7, 6, ¢) and R = 1 —
ercos#, being defined as in previous work [10]. An equi-
librium topology is nested around the origin if a smooth
application exists, with nonsingular Jacobian /g (ex-
cept on r = 0), which maps the space into flux coor-
dinates (@, ¥, ¢) such that (r, ) = (0). The toroidal
current enclosed by each flux surface, I(@) = [ 8 X
[ J8J%(0', 9')d¥'dg’, is then continuous on the flux
label ¢ and the PFR layer matches a given flux surface.
There, Ampeére’s Law requires ¢ Bydd = 0, with B’ =
€%79 4 the field poloidal-section components and e’/
the Levi-Civita tensor, whence dif/do = 0 because
§ g99//gdV is always positive. In addition to symmetry
in the angle ¥, this forces Vi to vanish and the Hessian
matrix aizjr,lf, with eigenvalues Ay, = gpoJ/4 and Ay = 0, to
be singular throughout the PFR layer, thus defining the
latter as a set of degenerate critical points. On the other
hand, it is known that values of the control parameter & for
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which ¢(r, 0; &) displays degenerate critical points always
make up a measure-zero set in parameter space (the bifur-
cation set) [15]. Moreover, corresponding degenerate func-
tions are structurally unstable, and any small perturbation
in & turns the connected set of degenerate critical points
into a discrete set of isolated, nondegenerate ones, in
whose vicinity (r, 8; €) is reduced to a twofold Morse
form (e.g., an o point or a x point) [16]. Hence, reversed
equilibria with nested topology are isolated and hardly
realizable, as previously reported [6], while structurally
stable non-nested solutions should be expected whenever
¢ leaves its bifurcation set, which is reduced to ¢ = 0 if
solutions for Eq. (1) are sought as

+o0o n

Po(r) + Z wnk(r) cosk6,  (2)

n=1k=

P(r, 05 8) =

and if the very peculiar boundary conditions and input
profiles that would arise from setting det(d? L) = 0 with
nonzero € are excluded. Then, departing from cylindrical
equilibria, an island system unfolds from the once degen-
erate PFR layer, precluding a global mapping to flux
coordinates and yielding a jump in I(Q) every time a
separatrix is crossed. Note that every flux surface must
now enclose a nonvanishing toroidal current (otherwise it
would be a set of degenerate critical points), and the PFR
layer becomes orthogonal to all unfolding flux surfaces.

Inserting the series (2) into Eq. (1), and subsequently
collecting for the same powers of &, is known to engender
the zeroth-order condition

L] = pol) + ¥ 3)

and the ordinary-differential-equation hierarchy

Phu(r) + ru(r) + [s(r) = Kl (r) = bu(r), - (@)
where s(r) = r*[po(r) + Yy(r)] and the nonhomogeneous
term b, (r) couples lower-order quantities only, allowing
each i, (r) to be computed in a closed integral form as
"b';k + [r duu='g; 2 (u)
8 Tk

k

&Ma=&m[

X [u dvvlgk(v)l/)\nk(v)} &)
0

once input profiles [the zeroth-order pressure p,(r) and po-
loidal field (1)1, homogeneous solutions g, (r) to Eq. (4),
and boundary conditions z,bnk ¢nk(i’nk) at rh, >0 are
provided (except for k = 1, where 1), z/rnk = 0) [10].
It is also known that po(r) = p[i(r, 6,)] and g (r) =

d,(r, 8g) are not changed along the chorgi\s 6, and 6,
when considering successive perturbations i, (r), if addi-
tional dependencies in & for p(i, €) and Y (i, €) are suit-
ably defined, enabling a natural relation with experimental

data [10]. Although each P,(r) = 9" p(, €)/d&"|,— and
V,(r) = 3"Y(¢, €)/9€"| .— is, by definition, a function of
Jo(r), they are required to annihilate a set of arbitrary
radial functions [10], which is possible only if ¢{(r) never
vanishes and the inverse function r(i,) does exist.
Therefore, reversed equilibria cannot be easily handled
and the additional dependencies in & for p(i) and Y (i)
must be dropped, leaving p[i(r, 8)] and 9,4(r, 8) subject

everywhere to the effects of all perturbations #,,(r), in-
cluding also over any chords 6, and 6.

Following dlrectly from Egs. (1) and (3), the zeroth-
order profile Jo (r) = r~'d(ry}))/dr must be a function of
o (r) with well defined flux derivatives (d/ dz,bo)”JgS (o) =
(1/;Z/{))(d/dr)(d/dt//o)"_ng’[zﬁO(r)]. Such is indeed the
case for any radial function JJ (r) if 4 never vanishes,
whereas for a reversed configuration [with ¢ (r;) = 0 at
rp > 0] care must be taken to ensure that ¢, does not
approach zero over ry faster than (d/dr)(d/ dt/ro)"Jg’ (o)
for every n = 0. To this end, the nonlinear condition

208(r) + rl(r) = PRI [ (r)] (6)

must be solved for some Jo () with a proper Taylor series
expansion at i = iy(rr), along with the conditions
¥o(0) = ¢ (r) = 0, which means the zeroth-order poloi-
dal field B§(r) = r~ 'y} (r) cannot be arbitrarily chosen.
Moreover, every PFR layer point (except the x points) is
enclosed by a set of unfolding flux surfaces, which are
pierced twice (on both sides of the layer) by any chord 8 =
0 directed towards the core. Consequently, the radial
profile f(r) = f[4(r, 6;)] for any continuously differen-
tiable flux function f(i) cannot be monotonic, as the
derivative f'(r) = f()d,4y does change its sign when
crossing the PFR layer. Applied to p(#), this simple argu-
ment properly extends previous results [6,7,9] to non-
nested equilibria and general input profiles.
Current-carrying plasmas are known to display preferred

(or resilient) current-density profiles of the type J(f (o) o
e "o, and several attempts have been made to derive these
from some variational or statistical principle [11-13].
Leading to ¢/o(r) o« In[1 + (e*/2 — 1)r?], such profiles can-
not sustain a PFR layer, because neither J(‘f (o) nor i (r)
would be allowed to reverse their sign. A natural relaxation
should then be expected, driving the reversed equilibria
towards a resilient distribution while removing the PFR
layer. This process is visible in nonlinear resistive simula-
tions [17], with the negative-current region enclosing the
magnetic axis being displaced towards the low-field-side x
point, where the two critical points merge together and
vanish with a sudden change in equilibrium topology. Yet,
relaxation events may be halted if the low-field-side x point
is turned into an o point, able to sustain the outward force
acting on the core [14]. In the following, this is achleved by
suitably tailoring the input profiles po(r) and JO (r).
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Assuming up-down symmetry (reducing the algebra
without changing the physics), the product of the Hessian
eigenvalues along § = 7 follows from Eq. (2) as

Mg = Plie — Wby + 2000n)e> + -+ (T)

since 1,//10(r) and ¢/21(r) do vanish, the former due to
blo(r) = 0 and the latter because all terms in bzl(r) are
P\roportlonal to :plo(r) or to its derivatives [18]. Inserting
byy(r) = r*[2rpo(r) — y(r)] and g,(r) = y(r) [10] into
Eq. (5), one easily finds l,lb\ll(rL) to be positive if py(r) >
3¥4(r)/r throughout 0 < r < ri, and negative otherwise,
in case lIJ\ll(r) does not change its sign there. Since

o(ry) = J(‘)ﬁ(rL), on (rp, 7) and at first order in Eq. (7),
a sufficiently hollow pg(r) leads to an x point (A,Ag < 0),
which may be turned into an o point (A,A, > 0) by flat-
tening the pressure profile. Such flattening is, nevertheless,

ineffective in removing the x point for elongated plasmas
when oversimplified, null-gradient current-density models

are considered. Indeed, setting po(r) = ]0 (r) =0, with
negative current density J~) flowing in the core and p031—
tive J) elsewhere [8], along with r~ b22 = 2¢11 —
(r2¢/11)’ — 2r?y), yields at length

‘/’11(”L)—*VLJ(+)(,U«_ 1 —2Inw), (8a)
Iy () = grLJ(Jr)(M — 1), (8b)
() = "L(l/’zz JH), (8c)
in the limit r;, << 1, where u~! = 1 — J7) /J) The value

@Zz is related with the ellipticity «* at r3, through «* =~
1+ (8/75)* 2 /J) [10], whence the condition

1 /e\2
] — 9
“ 32<r22> ®

in order to keep A,Aq4 positive at (ry, 7).

W), I8, po(n)

0 1

FIG. 1. Zeroth-order profiles (r) (solid line), Jg (r) (dashed
line), and py(r) for @« = 9.5 and y = 10 (dashed-dotted line),
normalized to their maximum values.

Enabling an o point at the low-field side for elongated
plasmas requires more complex proﬁles In terms of non-
normalized poloidal flux Wy = oW nax

JO (\PO) X ay + le‘l’o (103)

if r= ry, leading to l,[/o o] — Jo(jl,lr/rL), with jl,l the
first zero of J;(x) and J,(x) Bessel functions of the first
kind, and

by + (¥,
1 + Cl(\PO -

— Wy )[b,
W)+ (g —

— b3e*h4(‘1’0*‘1'L)]
Wy )t

= W, (rL). These are plotted in Fig. 1
for a; = —02MAmM™2, b, =800, by = b, = 1500,
c = 106, and Cy = 3X 107 [Wlth a, = —(jl,l/rL)z and
by = a;Jy(j1,1) chosen in order to ensure ((r;) = 0 and
the continuity of JgS (y9) over r, = 0.15], in addition to
Y (r), arising from Eq. (6) after rescaling Wy (r) by Wp.x =
0.46 Tm?, and the normalized pressure model

po¥) = e2A(1 + ay)e™ Y

with A = 0.88, all stemming from typical Joint European
Torus parameters a = 0.95 m, Ry = 2.96 m, By = 2.5 T,
T.=6%keV, T,=18%keV, n,=15%X10" m3, and
I, = 1 MA [3]. Contrary to previous works [8,9], the
profiles in Eqgs. (10) and (11) are not dictated by any
limitation of the GS solver, their choice resulting only

J{f’(‘l’o) o

(10b)

elsewhere, taking ¥

T T T

rsin 0

- 1 0 1 1
-1 0 1
—rcos 6

FIG. 2. Contours of i(r,0) = —5(1 +i) X 107* for i=

.,6 (core zone), ¥(r,0) =i/20 for i =1,...,28 (outer
zone), and the separatrices (dotted lines) for @ = 9.5 and
v =10.

015001-3



PRL 95, 015001 (2005) PHYSICAL

REVIEW LETTERS

week ending
1 JULY 2005

<
%)

<
()

107Tp(r)/pe(0)-1]

|
=]
- f=}

~a=100

(=}

0.1 0.2 0.3 0.4
r

FIG. 3. Contours of (r,0) = —2(1+i) X 10™* for i=
1,...,19 in the core for @« = 9, 9.5, and 10 (upper panel, from
left to right) and corresponding profiles 102[py(r)/po(0) — 1]
(lower panel, represented for r = 0.4 only).

from the wish to handle profiles as much reasonable and
close to experiments as possible [3,4]. In fact, the model in
Eq. (10b) is devised to provide a steep growth of Jgs (r)
toward its main peak via the linear term in the numerator,
followed by a drop to zero due to the denominator, while
the exponential term accounts for a secondary peak at
r.. The equilibrium, for boundary conditions (1) =
1.5, ¥3,(1) =4, and 33(1) = 5, is depicted in Fig. 2,
with two islands located over the midplane critical points.
Pushed by surrounding positive-current channels, the
negative-current core is limited to vertical motions only,
which, in certain conditions, may be stabilized by the
current flowing in the elongation coils [14]. Also, the effect
of a variable pressure profile on the inner-separatrix shape
is clearly illustrated in Fig. 3, where fine tuning « in
Eq. (11) turns the low-field-side x point into an o point.
In conclusion, reversed equilibria were shown to be
necessarily non-nested, except for the cylindrical case
and other very particular degenerate configurations, and a
perturbative approach was adapted to cope with a PFR
layer and with generic profiles, disclosing some constraints
they are subjected to. In particular, ¢,(r) was shown to be a
solution of Eq. (6) rather than an arbitrary function with
vanishing derivative at r, thus limiting the choices for the
zeroth-order B (r) [or, equivalently, Jg’ (r)], while the pres-
sure, as any other continuously differentiable flux function,
was found to be nonmonotonic over any chord of constant
6 crossing the PFR layer. The ability to handle more
general profiles enabled the x point at the low-field side

to be changed into an o point for elongated plasmas, thus
sustaining the negative-current core against outward forces
from surrounding plasma currents and making its vertical
displacements able to be stabilized by elongation-coil cur-
rents. Combined, these may prevent current redistribution
aiming to restore a resilient-type current-density profile,
which was shown to be incompatible with reversed con-
figurations. Finally, in order to assess the physics of re-
versed equilibria, and even if experimental evidence of
their existence remains an open issue, suitable GS solvers
such as the one here presented (which is not bounded to
any particular profile models and whose sole restrictions
are the universal ones stemming from the GS equation)
will always be required.
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