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Repulsive Synchronization in an Array of Phase Oscillators
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We study the dynamics of a repulsively coupled array of phase oscillators. For an array of globally
coupled identical oscillators, repulsive coupling results in a family of synchronized regimes characterized
by zero mean field. If the number of oscillators is sufficiently large, phase locking among oscillators is
destroyed, independently of the coupling strength, when the oscillators’ natural frequencies are not the
same. In locally coupled networks, however, phase locking occurs even for nonidentical oscillators when
the coupling strength is sufficiently strong.
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Introduction.—Interest in the dynamics of arrays of
coupled nonlinear oscillators is driven by important appli-
cations in physics (coupled Josephson junctions [1], laser
arrays [2]), engineering (phased antenna arrays [3,4]),
biology (neural networks [5,6]), etc. Locally coupled os-
cillators can exhibit a variety of complex spatially nonuni-
form regimes including clustering, wave propagation, and
chaos. The most interesting phenomenon occurring in a
globally coupled array of oscillators with distributed fre-
quencies is the transition to a globally synchronized regime
when the coupling strength between the oscillators is in-
creased. It can be described analytically with the Kuramoto
model of coupled phase oscillators [7–9]. Subsequently,
many extensions of the original Kuramoto model have
been studied, including more general, time-delayed, spa-
tially nonuniform, adaptive coupling, noise, external driv-
ing, etc. (see, e.g., [10]). We should note that the coupling
among the oscillators has almost exclusively been assumed
to be attractive; i.e., two coupled oscillators tend to oscil-
late in phase. However, inhibitory (or repulsive) coupling is
very common in biological systems. In Ref. [11] it was
shown that sparse long-range inhibitory coupling in addi-
tion to local excitatory coupling can produce stable non-
uniform phase distributions in an array of identical phase
oscillators. Kim et al. [12] studied pattern formation in a
two-dimensional array of identical phase oscillators with
phase-shifted coupling, which for the phase shift � corre-
sponds to the repulsive coupling.

In this Letter we will analyze the dynamics of phase
oscillators with purely repulsive coupling. Obviously, two
repulsively coupled oscillators tend to oscillate in anti-
phase (see, e.g., [12,13]). The situation is less trivial for a
large number of oscillators. We show that the dynamics of
an array of globally coupled oscillators with identical
natural frequencies settle onto one of several possible
synchronized regimes characterized by zero mean field
[14]. This result changes drastically when the oscillators
have nonidentical natural frequencies. A small number of
oscillators will still synchronize for sufficiently strong cou-
pling; however, a large ensemble of oscillators (N > 3)
will not synchronize for any coupling strength. We also
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consider the dynamics of a locally coupled one-
dimensional array of oscillators (when the span of inter-
action is less than the system size). In this case, for suffi-
ciently strong repulsive coupling, even an array of oscil-
lators with nonidentical frequencies will synchronize with
an approximately linear phase distribution. We expect
similar behavior to be observed more generally in repul-
sively coupled physical and biological systems.

Global coupling.—Let us first consider the dynamics of
a globally coupled array of phase oscillators known as the
Kuramoto model [7]:

_’ j � !j �
�
N

XN
n�1

sin�’n � ’j�: (1)

Without loss of generality, we assume that the mean natural
frequency of the oscillators is zero, N�1�N

j�1!j � 0. Note
the negative sign in front of the coupling term corresponds
to the case of repulsive coupling which is the focus of this
Letter. We can introduce the complex mean field

R � rei �
1

N

XN
n�1

ei’n ; (2)

so Eq. (1) can be written as

_’ j � !j � �r sin� � ’j�: (3)

Numerical simulations of Eq. (1) show that when the
natural frequencies of the oscillators are identical (!j �

0), the mean field always reaches zero after an initial
transient period. This stationary regime corresponds to all
of the oscillators having different phases. However, the
phase distribution is neither uniform nor unique: the sta-
tionary regime can exhibit an arbitrary phase distribution
among individual oscillators, subject only to the constraint
R � 0. All these solutions are neutrally stable.

Indeed, it can be shown that the Jacobian of the line-
arized Eq. (1) hasN � 2 zero eigenvalues and two negative
eigenvalues corresponding to the decaying magnitude of
the mean field R. It can also be shown that the zero-mean-
field solution is globally stable [15].
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For nonidentical frequencies, the dynamics of the array
are more complicated. The mean field oscillates for small
values of coupling �; however, for larger coupling
strengths, the oscillators may synchronize. The transition
to the synchronized regime depends strongly on the num-
ber of oscillators in the array.

For two oscillators with frequencies �!0, symmetry
dictates that the mean field does not oscillate in the syn-
chronized regime, and that the phases of the oscillators are
symmetric with respect to the mean field phase  � 0:
’1 � �’2 � ’. The equation for the single phase ’

_’ � !0 �
�
2
sin2’ (4)

has two stationary solutions: � arcsin�2!0�
�1�=2 and

��=2� arcsin�2!0��1�=2. The first solution is unstable,
but the second solution is stable. These stable and unstable
synchronized solutions merge and disappear when
�!�1

0 < 2, giving rise to the nonsynchronized regime. In
the synchronized regime, the mean field decreases with the
coupling strength as

R �

��������������������������������������
1�

��������������������������
1� 4!2

0=�
2

q
2

vuut
: (5)

This solution agrees with the numerically computed bifur-
cation diagram shown in Fig. 1(a).

For the case of three oscillators with a symmetric distri-
bution of frequencies !1;2;3 � �!0; 0; !0, we introduce
the phase differences �0 � ’2 � ’1, �1 � ’3 � ’2. The
equations for �0;1 are

_� i�!0�
�
3
�sin��i��1�i��sin�1�i�2sin�i�; (6)

i � 0, 1. The symmetric synchronized solution corre-
sponds to the fixed point �0 � �1 � �, which is defined
by the transcendental equation

!0 � �
�
3
�sin�� sin2��: (7)

This equation has two solutions which merge and disap-
pear, via a saddle-node bifurcation, for �!�1
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FIG. 1 (color online). Bifurcation diagrams: extrema of the
mean field magnitude r vs � for N � 2, 3, 4, and 5 oscillators
with natural frequencies uniformly spread across the interval
��0:5; 0:5�. Solid line in panel N � 2 corresponds to the ana-
lytical formula (5).
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of two oscillators, this condition determines the existence
but not the stability of the synchronized solution. To de-
termine the conditions for the stability of the synchronized
solution, we linearize Eqs. (6) near the fixed point (7) and
find the two eigenvalues �1 � � cos�, �2 �

�
3 �2 cos2��

cos��. It is easy to check that both these eigenvalues are
negative if arccos��1�

������
33

p
�=8�< j�� �j<�=2, which

according to (7) corresponds to a stability threshold � �
3!0 [cf. Fig. 1(b)].

Now we examine the dynamics of an ensemble of many
oscillators with distributed frequencies. Without loss of
generality, we assume that they are distributed within the
interval ��!0; !0�. For large N, the synchronized solution
must be unstable. Indeed, according to Eq. (3), if there is a
completely synchronized solution, the magnitude of the
corresponding mean field rmust satisfy the condition �r >
!0. In the reference frame corotating with mean field, the
synchronized solution of (3) is stationary. In the limit of
large N, Eq. (3) in the linear approximation decouples be-
cause perturbing the phase of one of the oscillators without
changing phases of other oscillators will only affect the
mean field by a negligible amount O�1=N�. Therefore, the
eigenvalue corresponding to the jth oscillator is �j �
�r cos�0

j �O�1=N� (where �0
j is the stationary phase of

jth oscillator with respect to the phase mean field). The
phases of at least some of the oscillators must lie within the
interval ���=2; �=2�. Therefore, the corresponding eigen-
values of the synchronized solution are positive, so the
synchronized solution is unstable. In fact, our numerical
simulations show that the synchronized solution is unstable
for any � and for all N � 4 (see, e.g., bifurcation diagrams
for N � 4, 5 in Figs. 1(c) and 1(d); however, we were not
able to prove this analytically for arbitrary N and fre-
quency distributions.

In the unsynchronized regime, the oscillators maintain
their natural frequencies on average; however, due to
coupling they adjust their phases so as to minimize the
mean field. The equation for the mean field for nonidenti-
cal frequencies can be written as

_R �
1

N

XN
n�1

!ne
i’n �

�
2

�
R� R
 1

N

XN
n�1

e2i’n
	
: (8)

In the limit of large N, the last term in the right-hand side
can be neglected, and the first term can be approximated as
N�1�N

n�1!nei�!nt��n�n, where �n is the random phase of an
individual oscillator [16]. The resulting equation

_R �
1

N

XN
n�1

!ne
i�!nt��n� �

�
2
R (9)

can be easily solved. For large �, the mean field can be
written as R�t� � 2��N��1�N

n�1!nei�!nt��n�. Assuming a
uniform distribution of frequencies in the interval
��!0; !0�, we get the standard deviation of R�t�,
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FIG. 2 (color online). The normalized standard deviation of
the mean field ��r vs � for several values of N corresponding to
the nonsynchronized regime (a) and vs the number of oscillators
for large coupling, � � 5 (b) for !0 � 1. The solid line in (b)
corresponds to the theoretical solution.
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FIG. 3 (color online). (a), (b) Space-time plots of sin�’j�t�� for
N � 100, � � 2, and !0 � 0:1 in the synchronized regime L �
40 (a) and unsynchronized regime L � 48 (b). (c), (d) Phase
distributions for oscillators at t � 1000. Gray scale from white to
black corresponds to the range ��1; 1�.
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�r � 2!0�3N�2��1=2, which agrees with numerical simu-
lations for large N (see Fig. 2).

Local coupling.—Now we consider the case of a one-
dimensional array of phase oscillators repulsively coupled
to their L left and L right neighbors, where L< N=2,

_’ j � !j �
�

2L� 1

XL
n��L

sin�’j�n � ’j�: (10)

We assume periodic boundary conditions: ’j�N � ’j. The
limiting case of L � 1 corresponds to the nearest-neighbor
coupling. It is well known that for repulsive nearest-
neighbor coupling an antiphase synchronization in the
form of � oscillations emerges (see, for example, [17]).
Here we address the general case of L � 0.

Our numerical simulations show that for L < N=2 and
large enough �, oscillators with frequencies distributed
within a finite range ��!0; !0� converge to an attractor
with an almost linear phase distribution ’j � �’j. The
larger �, the closer the phase distribution is to a linear
profile; see Fig. 3(a) and 3(c). For the case of identical
oscillators (!0 � 0) and an arbitrary nonzero value of
coupling, the phase distribution is exactly linear. To satisfy
the periodic boundary conditions, the value of the phase
shift �’ may only take discrete values �’n � �2n�=N,
n � 1; 2; 3; . . . [18]. The selected phase shift �’s depends
on both L and N, but is independent of the coupling
constant �. For a large system (N � L), the phase shift
between the neighboring oscillators approaches a certain
value �’1, which depends on L only [Fig. 4(d) shows the
selected phase difference �’s as a function of L for an
array of 99 identical oscillators]. Note that similar domains
with linear phase distributions were found in a two-
dimensional array of phase oscillators with finite-range
phase-shifted coupling [12].

Analytical understanding of this phenomenology can be
gained by noticing that model (10) can be obtained from
the variational principle _’j � �@’jF, where the free en-
ergy is

F��
XN
j�1

!j’j�
�

2�2L�1�

XN
j�1

XL
n��L

cos�’j�n�’j�; (11)

see, for example, [5]. Stable stationary solutions of (10)
correspond to local minima of F. Assuming !j � 0 and a
linear phase grid ’j � j�’, we obtain from (11) the free
energy density

f �
F
N

�
� sin��’�L� 1�� � sin��’L�

2�2L� 1� sin��’�
: (12)

For a fixed L, this free energy as a function of �’ has
multiple minima [Figs. 4(a) and 4(c)]. The most stable
solution corresponds to the global minimum of f. ForN �
L� 1, f 
 � sin��’L�=4�’L, and its global minimum
�’m is given by �’mL 
 4:49. For finite L and large N,
�’mL is not constant, but depends on L. For L� N, as
was mentioned before, the selected phase shift �’s must
be taken from a discrete set �’n [corresponding values of
01410
free energy fn are shown in Fig. 4(b)]. This leads to a
stepwise dependence of �’s on L for a fixed N [see
Fig. 4(d)]. As seen in Fig. 4(c), for 2L� 1 ! N the phase
difference approaches 4�=N. At the same time, fn ! 0.

The mechanism providing stability of the linear phase
grid is easily understood. Note that the free energy density
f is equal to the local ‘‘mean field’’ of the jth oscillator
in its corotating reference frame f�Rj��2L�1��1�

�L
n��Lexp�i�’j�n�’j��. For the resulting values of

�’m, the free energy is negative (fm < 0); i.e., the local
mean field is in antiphase with the oscillator.

For nonidentical oscillators with frequencies distributed
within a finite interval ��!0; !0�, the situation is qualita-
tively the same. The oscillators synchronize to the local
‘‘mean field’’ R � fn with the phases approximately form-
ing a linear grid. Since the local mean field is finite and
negative, the oscillators remain synchronized as long as all
j!jj< �jRjj. However, as we have just seen, fn ! 0 as
2L� 1 ! N; i.e., as the span of interactions approaches
the system size, the local mean field disappears. At the
value of L for which fn < !0=�, synchronization is lost.
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FIG. 4 (color online). Dependence of the free energy density f
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according to (12) (a), (c). (b) fn vs L for several values of �’n.
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99 identical oscillators.
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This is confirmed by direct numerical simulation of
Eq. (10) [see Figs. 3(b) and 3(d)].

Summary.—In this Letter we investigated the dynamics
of repulsively coupled phase oscillators. With global cou-
pling, the system dynamics converge to a regime that
minimizes the mean field. For identical frequencies, the
mean field decays to zero for any nonzero coupling coef-
ficient, whereas for nonidentical frequencies, the mean
field remains finite for any finite value of coupling strength.
Furthermore, for the number of oscillators N > 3, repul-
sive coupling fails to synchronize the array, and the mean
field fluctuates for any value of coupling constant. A one-
dimensional array with local coupling spanning a finite
number of neighbor oscillators synchronizes to a locally
linear grid of phases when the span of coupling is suffi-
ciently smaller than the system size.

The model of repulsive coupling studied in this Letter is
rather idealized. However, it may serve as a paradigm for
many biological networks in which different elements
compete against each other. The best known example of
such networks are neuronal ensembles with inhibitory
coupling [5]. It is well known that in such systems, nonuni-
form synchronized oscillation patterns may emerge. Such
neuronal circuits underlie central pattern generators in
many biological systems [6].

In this Letter we considered only two simple cases of
repulsively coupled oscillators: a globally coupled array
and a one-dimensional array with local connections. The
influence of the network architecture on the dynamics of
repulsively coupled oscillators is an interesting open ques-
tion. We also assumed that the coupling function (which
has to be 2� periodic) has only fundamental Fourier com-
ponent. It is well known that including higher harmonics in
the coupling function can lead to different behavior near
the synchronization transition in a system of attractively
coupled oscillators [9,19]. Based on our preliminary nu-
merical studies, we believe that this is not the case for
01410
repulsive synchronization; however, this issue deserves
further investigation. Another interesting issue left open
is the effect of noise on the dynamics of repulsively
coupled oscillators. For the case of many identical oscil-
lators, the continuum of stationary states with zero mean
field suggests that the noise will cause the system to drift
diffusively among these states.

This work was supported by the DARPA under Contract
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