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Standard quantum key distribution protocols are provably secure against eavesdropping attacks, if
quantum theory is correct. It is theoretically interesting to know if we need to assume the validity of
quantum theory to prove the security of quantum key distribution, or whether its security can be based on
other physical principles. The question would also be of practical interest if quantum mechanics were ever
to fail in some regime, because a scientifically and technologically advanced eavesdropper could perhaps
use postquantum physics to extract information from quantum communications without necessarily
causing the quantum state disturbances on which existing security proofs rely. Here we describe a key
distribution scheme provably secure against general attacks by a postquantum eavesdropper limited only
by the impossibility of superluminal signaling. Its security stems from violation of a Bell inequality.
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With the discoveries of quantum cryptography [1] and
quantum key distribution [2,3], it is now well understood
that cryptographic tasks can be guaranteed secure by physi-
cal principles. For example, we now have protocols for
various important tasks, including key distribution, that are
provably secure provided quantum theory is correct [4].
Protocols for bit commitment have been developed with
security based only on the impossibility of superluminal
signaling [5,6]. The possibility of basing cryptographic
security on known superselection rules has also recently
been discussed [7,8].

In this Letter we investigate whether it is possible to
devise a quantum key distribution scheme that is provably
secure if superluminal signaling is impossible. We allow
for eavesdroppers who can break the laws of quantum
mechanics, as long as nothing they can do implies the
possibility of superluminal signaling. In general, this will
mean that the security proofs of existing quantum key
distribution protocols are no longer valid, as we can no
longer assume that quantum theory correctly predicts the
trade-off between the information that Eve can extract and
the disturbance she must necessarily cause.

As we show below, there is an intimate connection
between the possibility of such a protocol and the violation
of a Bell inequality [9,10]. Nonlocal (in the sense of Bell
inequality violating) correlations constitute an exploitable
resource for this task, just as entanglement is a resource for
conventional quantum key distribution. We present a quan-
tum scheme, involving Bell violation, that is secure against
general attacks by a nonsignaling Eve.

One motivation for this work is practical: existing se-
curity proofs assume the validity of quantum theory, and
while quantum theory has been confirmed in an impressive
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range of experiments, it remains plausible that some future
experiment will demonstrate a limit to its domain of va-
lidity. Admittedly, it is also conceivable that some future
experiment could demonstrate the possibility of superlu-
minal signaling. But the possibilities are logically indepen-
dent: quantum theory could fail without violating standard
relativistic causality, and vice versa. A cryptographic
scheme that can be guaranteed secure by either of two
physical principles is more trustworthy than one whose
security relies entirely on one.

There are also compelling theoretical motivations.
Understanding which cryptographic tasks can be guaran-
teed secure by which physical principles improves our
understanding of the relationship between information the-
ory and physical theory. Our work also demonstrates a new
way of proving security for quantum protocols, which may
be useful in other contexts, and sheds new light on non-
locality and its relation to secrecy.

A quantum protocol for secret bit distribution.—We
assume that Alice and Bob have a noise-free quantum
channel and an authenticated classical channel. Consider
the following protocol, which we show below generates a
single shared secret bit, guaranteed secure against general
attacks by postquantum eavesdroppers. Define the bases
X, = {cosf%|0) + sinf%[1), — sinf% |0) + cosi%|1)} for in-
teger r. For each basis, we define outcomes 0 and 1 to
correspond, respectively, to the projections onto the first
and second basis elements. Thus X, 5 contains the same
basis states as X, with the outcome conventions reversed;
i.e., we interpret the bases X_; and Xy below to be Xy_;
and X, with outcomes reversed. We take the security
parameters N and M (defined below) to be large positive
integers. To simplify the analysis, we will take M << N.
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1. Alice and Bob share n = MN? pairs of systems, each
in the maximally entangled state |¢_) = 1/4/2(]01) —
[10)).

2. Alice and Bob choose independent random elements
ri, and ri of the set {0, 1,..., N — 1} for each i from 1 to
MN?, and measure their ith particle in the bases A; = X
and B; = X,% .

3. When all their measurements are complete, Alice and
Bob announce their bases over a public, authenticated,
classical channel.

4. Alice and Bob abort the protocol and restart unless

2MN < Z
i ¢=-—10,1

{j:A; = Xi, B; = Xiu -

(The expected size of the sum is 3MN. The probability of
the condition failing is of order e ~MN/6))

5. The outcomes are kept secret for one randomly chosen
pair for which the bases chosen were X; and X, . for some
iand ¢ = —1, 0, or 1. We call bases of this form neighbor-
ing or identical. The outcomes are announced for all the
remaining pairs (for all basis choices).

6. Alice and Bob abort the protocol if their outcomes a
and b are not anticorrelated (i.e., a # b) in all the cases
where they chose neighboring or identical bases.

7. If the protocol is not aborted, their unannounced out-
comes define the secret bit, which is taken by Alice to be
equal to her outcome and by Bob to be opposite to his.

Eavesdropping attacks.—To analyze the security of this
protocol, we must describe formally the actions available
to postquantum eavesdroppers. To give Eve maximum
power, we assume that each pair of systems is produced
by a source under her control. In a general, or collective,
attack, Eve prepares 2n + 1 systems in a postquantum state
A, sending n systems to Alice, n to Bob, and keeping 1. The
state A defines measurement probabilities

P ,(abe|ABE),

where A={A,,...,A,}, B={B,,...,B,} are sets of
Alice’s and Bob’s possible measurement choices and E =
{E,} is a set containing a possible measurement choice of
Eve, with corresponding outcomes a, b, e. This state may
be nonquantum and nonlocal, but must not allow signaling
even if the parties cooperate. Thus, for any partitionings
A=A"UA?, B=B'UB? and E = E'UE? (possibly
including empty subsets), and any alternative choices
A?, B?, E?, we require that

Z P,(a'a*b'b%e'¢*|A'A2B' BE' E?)
azbzez
= Z P,(a'a*b'b*e'e*|A'A’B'B’E'E?). (1)
ath?e?

Eve may wait until all Alice’s and Bob’s communications
are finished before performing her measurement.

We need a further technical assumption. It seems natural
to postulate that, once Eve has prepared a postquantum
state A, the range of measurements available to her and
their outcome probabilities are (up to relabelings) time
independent. In fact, a slightly weaker assumption suffices:
we assume that in postquantum theory, as in quantum
theory, measurements on a shared state cannot be used to
send signals between the parties in any configuration (even
if not spacelike separated). If this assumption were
dropped, one could allow a theory in which information
about the bases and outcomes of any measurements carried
out by Alice and Bob propagates to Eve at light speed, so
she can obtain these data by a later measurement timelike
separated from Alice’s and Bob’s. While theories of this
type may seem implausible, or even pathological, they can
be made internally consistent without allowing superlumi-
nal communication [11]. Clearly, secure key distribution
would be impossible if Eve could exploit a theory of this
type.

One can justify excluding this possibility by extending a
standard cryptographic assumption to postquantum cryp-
tology. Conventional security analyses of quantum key
distribution require that Alice’s and Bob’s laboratories
are completely secure against Eve’s scrutiny—a necessary
cryptographic assumption, which does not follow from the
laws of quantum theory. Similarly, in the postquantum
context, we assume that no information about events in
Alice’s and Bob’s laboratories—in particular, their mea-
surements or outcomes—subsequently propagates to Eve.
Put another way, Alice and Bob have to assume they can
establish secure laboratories, else cryptography is point-
less. The aim is to guarantee secure key distribution mod-
ulo this assumption. We shall prove that the protocol above
is indeed secure against general attacks.

Proof of security.—We define A;, B; to be Alice’s and
Bob’s basis choices for the jth pair; these are random
variables, each measurement occurring with probability
1/N. We also define a j» bj to be their measurement out-
comes and write

N—1
c=-1,0,1 i=0

i Xite):

(Recall that X_; and Xy are Xy_; and X, with outcomes
2

reversed.) Note that if A is local we have 1; = 1 — 5. Thus
this is a generalized Bell inequality (it is in fact similar to
the chained Bell inequality of Braunstein and Caves [12]).
If there is no eavesdropping, so that genuine singlet states
are shared, then quantum mechanics gives f; =
1 — O(1/(N?)), for all j, thus violating the inequality for
large enough N. This is crucial for the security of the
protocol; it is violation of this inequality that allows
Eve’s knowledge to be bounded. Below, we shall derive a
lower bound on the value of z, for the secret pair s, given

that Alice’s and Bob’s tests are passed, and given that Eve
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is not using a strategy that almost always fails the tests.
Then we show that the lower bound on 7, implies an upper
bound on Eve’s information, which can be made arbitrarily
small as M, N become large.

From now on, we assume that there is at least one pair
for which Alice’s and Bob’s measurements were neighbor-
ing or identical (otherwise they will abort). Let s, a random
variable, be the index of the pair chosen to define the secret
bit. A postquantum state A determines the probability
P, (pass) that Alice’s and Bob’s tests are passed, so that
they do not abort the protocol.

Lemma.—For any A such that P,(pass) > €, we have
that

P ,(a, # b,|lpass) >1—1/(2MNe).

Proof.—Let m, a random variable, be the number of
pairs for which the measurements were neighboring or
identical. For a given pair, let C be the condition that the
measurements were neighboring or identical and the out-
comes anticorrelated. If the secret pair satisfies C, then
Alice and Bob will agree on the value of the secret bit. We
denote by #(C) the number of pairs for which C holds.
Define the following four mutually exclusive and collec-
tively exhaustive events:

Ey: m <2MN,

E;: m=2MN and #(C)<m—1,
E,: m=2MN and #C)=m — 1,
E;: m=2MN and #(C)=m.

Note that if E, or E; occurs, then Alice and Bob will
definitely abort. If E5 occurs, then Alice and Bob will
definitely not abort. A given postquantum state A defines
a probability for each of these four events, which we write
as P(E;) = gq;.

Now we have P,(pass) = g3 + ¢,P,(pass|E,). If E,
occurs, then the test will only be passed if the secret pair
do not satisfy C. This means that we have

MN?

P, (pass|E,) = Z P(m = i|E,)/i = 1/(2MN). (2)
i=2MN

But P,(pass) > €, so we can write g3 > € — q,/(2MN).
Therefore,
P, (a, # blpass)

_ q3 =
q3 + q2P(pass|E,)

1 —1/2MNe), (3)

where the inequality follows from the fact that the right
hand side of the first line either equals 1 or is monotoni-
cally increasing with g3. QED.

It follows from the lemma above, the no signaling
condition (1) and the chain rule for conditional probabil-
ities that, conditioned on passing the test,

ty>1—1/(2MNe). “)

From now on, we assume that the test is passed, and we can
consider that Alice, Bob, and Eve share three systems, such
that Eq. (4) is satisfied. We now show that the knowledge
that Eve can get by performing a measurement on her
system is small.

We do this by contradiction. Thus suppose that with
probability 6 > 0, Eve gets an outcome e, such that

P)L(aS = br bs = ElAv =Xk’ BS =Xk+d’ 60) > (1/2)(1 + 5/);

for some k and d = —1, 0, or 1, where 6/ >0 and b €
{0, 1}. Define

p? = P/\(as = blA? = X,-, e())

p? = P/\(bs = b_lBs = Xi: 80);
The no signaling condition (1) ensures that p# is indepen-
dent of which measurement Bob performs, and similarly
that p? is independent of which measurement Alice per-

forms. This enables us to write p4, p¥_, > (1/2)(1 + &').
Now

P,(a, # b,|A, = X;, B, = X;1, €)
=P,(a, = b, b, = b|A; = X;, B, = X, ., €p)
+ P,(a, = b, b, = b|A, = X;, B, = X, 1., €p)
= min(p}, pf, ) + min(1 — p?, 1 — pf. )
=1- |Pf1 - P?ﬂ-l-

Now, using (1) again and the triangle inequality, we have

N—1
Z PA(a.Y i b\lA\ = Xi’ Bs = Xi+c’ 60)
c=-1,0,1 i=0
N—-1
=3N - > It = pEl
c=—1,0,1 i=0

N-1
=38 - Ipt = plil
=0
=3N—[2p{ = 1| =3N - &'
This implies that, conditioned only on passing the test,
t, =1—(88")/(3N). 5)

For any fixed 8, 6’ > 0, we can choose M, N, € such that
this is inconsistent with Eq. (4). M must also be chosen so
that quantum correlations are unlikely to fail the test. For
example, taking M = N3/4, e = N~'/* achieves this for
sufficiently large N. [Note that if Alice’s and Bob’s out-
comes are classically correlated via a local hidden variable
theory, the chances of passing the test are very small, and
there exists no choice of parameters for which Egs. (4) and
(5) are inconsistent.]
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Although we restricted the security parameter M << N
to simplify the discussion, the protocol can be generalized
to allow M arbitrarily large. In this case, Alice’s and Bob’s
security test is that the number of pairs for which the
outcomes are not anticorrelated should be statistically
consistent with quantum predictions; the method of our
security proof generalizes to cover this case.

Discussion.—The above security proof shows that our
protocol allows Alice and Bob to generate a single shared
bit and guarantee its security even against collective at-
tacks by a postquantum Eve. The protocol can be general-
ized to generate an arbitrary shared secret bit string, with
the same security guarantee.

Nonlocality is crucial to the success of the protocol. It is
easy to see that if Alice and Bob were violating no Bell
inequality, then Eve could eavesdrop perfectly by prepar-
ing each pair of systems in a postquantum state that is
deterministic (where deterministic means that all probabil-
ities defined by the state are O or 1) and local. This would
give Eve perfect information about Alice’s and Bob’s
measurement outcomes. On the other hand, if Alice and
Bob are violating a Bell inequality, then at least some of the
postquantum states prepared by Eve must be nonlocal. But
any state that is deterministic and nonlocal allows signaling
[13]. So this trivial eavesdropping strategy is not available
to Eve.

More generally, we can say that the protocol works
because, once the no signaling condition is assumed, non-
local correlations satisfy a monogamy condition analogous
to that of entanglement in quantum theory. The monogamy
of nonlocality was first noted in Ref. [14], where it was
shown that no signaling implies that there exist certain sets
of nonquantum correlations such that Alice’s and Bob’s
outcomes cannot be correlated with a third party. Here we
have shown that there are quantum correlations with the
same property, and used these to construct a key distribu-
tion protocol.

It is interesting to contrast the Ekert quantum key dis-
tribution protocol [3], in which a test of the Clauser-Horne-
Shimony-Holt (CHSH) inequality [10] is performed. It
may appear as if nonlocality is playing a crucial role
here, too. In this case, however, the purpose of the CHSH
inequality test is to verify that the shared states are close to
singlets—and this is a task that other measurements, not
involving nonlocality, can perform equally well [15].
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