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We discuss certain relations between cloning and the NOT operation that can be derived from
conservation laws alone. Those relations link the limitations on cloning and the NOT operation possibly
imposed by other laws of nature. Our result is quite general and holds both in classical and quantum-
mechanical worlds, for both optimal and suboptimal operations, and for bosons as well as fermions.
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As is well known, there are fundamental limitations on
the accuracy of certain quantum operations, with cloning
and the NOT operation applied to quantum bits being two
prime examples [1-9]. Those limitations are independent
of physical implementation. For instance, it is irrelevant
whether the qubits are implemented using Josephson junc-
tions, ions, or photons. Similarly, it is irrelevant whether
the two basis states |0) and |1) of the qubit correspond to
eigenstates of different charge, of different energy, or of
different angular momentum. Once one has chosen a par-
ticular implementation, however, there are often, if not
always, conservation laws that must be obeyed. Indeed,
there must be at least one physical quantity that takes
different values in the states |0) and |1); otherwise the
two states would not be orthogonal and distinguishable.
Depending on the situation there will be a conservation law
for that quantity, or for the complementary variable, or for
both. For example, although there are no conservation laws
for position or time, there are for linear momentum and
energy.

In the following we consider relations between limita-
tions on cloning and the NOT operation that arise from two
simple assumptions: (1) The states |0) and |1) correspond
to eigenstates of some conserved quantity with eigenvalues
—1 and +1 in some appropriate unit. For concreteness we
will say that the states are eigenstates of “‘angular momen-
tum.” (2) Each qubit is a “particle’” and a conservation law
holds for the number of particles. In relation to assump-
tion (2), note that in certain contexts (when considering
atoms, ions, quantum dots, or any other material entities as
qubits) conservation of the particle number is appropriate,
whereas in other contexts (for example, when one consid-
ers photons as qubits [7-9]) conservation of the excitation
number is more appropriate. In the following considera-
tions these two cases are mathematically equivalent, and
for ease of notation we will henceforth refer to particles
and use the particle conservation law.

It is important to note that in spite of the quantum-
mechanical notation and terminology used here, the as-
sumptions just mentioned by themselves make no use of
quantum mechanics. In particular, here and in the follow-
ing we will only need to discuss particles in states |0) and
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|1), but not in superpositions of |0) and |1). The relations
we will find between cloning and NOT operations hold,
therefore, just as well for classical cloning procedures
and NOT operations. But since in the end we are mostly
interested in understanding the quantum-mechanical re-
sults, we adopt quantum-mechanical notation.

Suppose we start out with N particles in the state |0) and
attempt to generate M > N clones in the same state. In
general, we will end up not only with M clones in states |0)
and possibly in state |1), but, by assumption (1), with some
nonzero number K (to be determined later) of ancilla
particles that must be present to compensate for the amount
of angular momentum produced or destroyed in the clon-
ing process. By assumption 2 then, we must have borrowed
M + K — N particles from elsewhere, a ‘“‘reservoir” of
particles. We assume the reservoir starts out in a state
with equal numbers of particles, say L, in states |0) and
[1). Thus, we denote the initial state by

IN,0)® |L, L) ey

where |n, m) denotes a state with n particles in state |0) and
m particles in state |1). The attempted cloning operation
may then be described by the transformation

IN,O)® L, L) = > Aypla, M — a)® |b, K — b)
a,b

®|L L. 2

The first ket on the right-hand side refers to clones, the
second ket to ancillas, and the third ket to the reservoir. The
coefficients A, ;, determine in some unspecified way the
probabilities p,,;, to find a clones in state |0) and b ancillas
in state |0). In quantum mechanics we would have p,;, =
|A,,|?. Although we wrote down a quantum-mechanical
superposition we may just as well regard the superposition
as a classical probability distribution over the various
possible outcomes of the cloning operation. The number
L'=L+(N—M-—K)/2 is fixed by particle number
conservation, and N — M — K must be an even number.

Assumption (1) puts a constraint on the numbers a, b.
Angular momentum conservation gives

2a+b)=N+K+ M. 3)
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At this point K, the number of ancillas, is still somewhat
arbitrary. Namely, after having fixed the cloning operation
we can always increase the number of ancillas by taking
some (even) number of particles from the reservoir and
promoting them to ancillas. This does not affect the clon-
ing operation and, provided we transfer equal numbers of
particles in states |0 and |1) from the reservoir, does not
affect angular momentum conservation of clones and an-
cillas either. It makes sense then to take the smallest
possible number K consistent with all conservation laws
as the canonical number of ancillas. That minimum num-
ber is easy to determine from constraint (3): suppose nature
allows us at least sometimes to achieve perfect cloning of
the state |0) with some nonzero probability. In that case we
have a term in the superposition with a = M. The mini-
mum b allowed is, of course, b = 0, so that the minimum
K consistent with (3) is

K=M-—N. (G))
Adopting this value for K then fixes b to be
b=M~—a. %)

With these ingredients, the cloning operation (2) can be
rewritten as

IN,0)® |L, L) —> ZAG,M,ala, M—a)®|M — a,a — N)
a

® L' L.
(6)
The average cloning fidelity F,,. may be defined as
a
F = —, 7
clone g‘puM ( )

where p, (determined by A, ,_,) gives the probability to
find a clones in the (correct) state |0), and where the
cloning fidelity for a state with a clones out of M in the
correct state is defined to be the ratio a/M. This in fact
corresponds to the standard definition of cloning fidelity,
see Ref. [10] and the discussion below.

The ancillas compensate for the angular momentum
produced in the cloning procedure and thus, roughly speak-
ing, they will end up in a state with angular momentum
opposite to that of the clones. But “flipping the angular
momentum’” of a qubit state is the same as applying the
NOT operation [6]. Thus, the better the cloning procedure
works, the better the NOT operation will be implemented on
the ancillas. This is why there is a strong connection
between the fidelity F ., of the cloning operation and a
similar fidelity Fyo; one can define for the NOT operation.
Namely, Fyor is analogously defined as the average of the
ratios of the number of ancillas in state |1), a — N, and the
total number of ancillas, M — N. Thus,

a—N
Fyor = ;pa M—N 3

But this immediately gives us a relation between F,,. and
Fyor that is independent of the values of p, [11]

(M_N)FNOT=MFc10ne_N- (9)

So far, we only considered cloning and the NOT as applied
to |0). But for universal cloners and the universal-NOT
operation the fidelities are, by definition, independent of
the input state. Thus, the relation (9) holds for any (optimal
or suboptimal) universal cloner and universal-NOT opera-
tion. The independence of that relation on the details of the
transformation (6) demonstrates the generality of the
result.

Instead of starting out, as we did here, with an operation
that is supposed to clone the state |0), we might as well
have begun with describing an operation that is supposed to
apply a NOT operation. The constraints we would find then
are exactly the same as we found before. And so we would
find the same relation (9) again, even if we had found
different coefficients B, instead of A, ;. This, combined
with the simple linear relationship between F .. and Fyor,
implies, in particular, that optimizing the NOT operation
would automatically optimize the cloning operation, and
vice versa.

The relation (9) quantifies to what extent the NOT opera-
tion can be performed given how well cloning can be
performed, and vice versa. For example, if one can perform
one perfectly, the other procedure can be performed per-
fectly as well. That, of course, reflects what is possible in a
classical world, but also what is possible quantum me-
chanically when one knows the input state. From (9) we
see that in general Fyor is never larger than F ., but in the
limit of M — oo with N finite one gets Fyor = Fone- 1he
optimum quantum cloning fidelity for universal cloning of
arbitrary unknown input states is well-known to be [3]

ggnezM(N+ 1)+N. (10)
M(N +2)
This combined with Eq. (9) immediately yields the opti-
mum universal-NOT fidelity:
N+1
For =535 (11)
which turns out to be independent of M. And indeed, this is
identical to the result obtained in [5,6] by other means.

The above-used notation is appropriate for bosons, with
a, b being occupation numbers of certain ‘‘modes.”
Nevertheless, the results are equally valid for fermions.
Indeed, there are in fact two different interpretations of
“cloning” when it is applied to bosons, and one of those
interpretations applies to fermions as well. For simplicity,
first consider 1 — 2 cloning. The (arbitrary, unknown)
state to be cloned can be written as A|0Q) + B|1), and
cloning, in the standard terminology, would correspond
to the transformation

A|0) + B|1) — [A]0) + B|1)]®?, (12)
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which adds a second particle and a second system. This
formulation works for fermions as well as for bosons.
Alternatively, we may write the same state in terms of
creation operators C(J)f’1 for excitations in the different
modes O and 1. For bosons, but not for fermions, it is
possible to create more than one excitation in a single
mode. Creating two bosons in the same mode starting
from a single boson may also be considered a form of
cloning. This would correspond to the transformation

[ACt + BCT?

V2

[ACg + BCT]Ivacuum> — [vacuum),

13)

which adds a second particle (excitation) but does not add a
second system (mode). Thus, although the initial states in
the transformations (12) and (13) are the same, the final
states are different. However, it is easy to verify there is a
unitary operation taking one final state to the other. In other
words, the two descriptions are unitarily equivalent. It is
also easy to check that the fidelity in terms of occupation
numbers of modes used in the present paper [correspond-
ing to cloning in the sense of (13)] is equivalent to the usual
definition of fidelity provided the cloning operation is
symmetric [i.e., all clones in Eq. (12) end up in the same
state]. This very same point was made in Ref. [10], where
details on the equivalence of the two definitions of fidelity
can be found. Hence, the limits on 1 — 2 cloning are in fact
exactly the same irrespective of which definition of cloning
one prefers.

More generally, one can show the two different final
states that appear in general N — M cloning procedures
are unitarily equivalent, and that the two corresponding
definitions of fidelity are identical for symmetric cloners.
In addition, in a similar manner one may use two different
definitions and descriptions for the NOT operation acting on
bosons. In the end those two formulations, too, are equiva-
lent, with one of them applicable to fermions.

The optimal universal cloner applied to the polarization
degree of freedom of photons can be and has been imple-
mented using stimulated emission [7-9]. In that context,
the operation (6) can be understood as follows: the initial
state consists of N photons in a particular spatial mode
(denoted by “1°*), all 0~ polarized. The reservoir consists
of 2L excited atoms: for instance, if oneusesa J = 1/2 —
J' = 1/2 transition, then an atom in the excited state |J. =
+1/2) “stores” a o~ -polarized photon. By stimulated
emission one produces with some probability M photons
in the same spatial mode 1 (the clones), and M — N
photons in a different spatial mode 2 (the ancillas). The
total number of atomic and photonic excitations is con-
served, i.e., 2L — 2L’ = 2M — 2N atoms have decayed to
the appropriate ground states. Obviously, angular momen-
tum is conserved too in this case, as expressed by selection

rules. The unitary operation implementing the optimal
cloner and the optimal NOT corresponding to this particular
physical implementation is given in Refs. [7-9].

In conclusion then, we have shown a strong relation
exists between (universal) cloning and the (universal)
NOT operation. That a relation exists between the optimum
fidelities for quantum cloning and the quantum universal
NOT operations had been noticed before in the context of
photons, as we have just mentioned, in Refs. [7-9]. But
here we demonstrate that the relation (9) holds more gen-
erally: it holds for suboptimal procedures, it holds for
fermions as well as bosons, and it holds in the classical
world. Moreover, we explain why an optimum cloner also
implements the optimal NOT operation. The only assump-
tions needed to derive this are simple conservation laws.
Conversely, it had been noted before that for the optimal
cloner a conservation law holds: a particularly nice form of
such a conservation law can be found in Ref. [12].

Finally, we note that the impossibility of the perfect NOT
operation arises from it not being a completely positive
map [5], whereas no cloning arises from the linearity of
quantum mechanics [1]. On the other hand, the optimum
fidelities of the corresponding imperfect quantum opera-
tions are determined by the unitarity of quantum mechan-
ics. Equation (9), however, uses none of those properties:
Unitarity or linearity or complete positivity put restrictions
on the values of the coefficients A, ;, in Eq. (2), but relation
(9) holds independent of the precise values of A, ,,.
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