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Röntgen Quantum Phase Shift: A Semiclassical Local Electrodynamical Effect?
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The Röntgen quantum phase shift is exhibited by the interference of point particles endowed with an
electric dipole moment due to their motion relative to a source of the magnetic field. Here we show, using
arguments involving the classical concepts of force and its impulse, that the Röntgen phase shift arises
within a largely classical (semiclassical) theoretical framework. All the subtleties normally associated
with the nonlocality of magnetic (Aharonov-Bohm-type) quantum phase phenomena are uncontrover-
sially absent in the classical treatment.
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Quantum phase phenomena have been of much interest
over the last decade or so, often referred to as topological
or Berry phases [1]. The work on certain aspects of the
quantum phase appears to have been motivated partly by
the prospect of its applications in quantum information
processing [2]. The prototypical example of a quantum
phase phenomenon is the Aharonov-Bohm (AB) effect
[3], which has been the subject of extensive discussion
and the existence of which has been confirmed experimen-
tally [4]. In the AB effect, charged particle states experi-
ence a shift in their interference pattern whenever a
magnetic flux links the closed circuit defined by the parti-
cles’ paths. Other well known quantum phase effects in-
clude the Aharonov-Casher effect [5] and the Matteucci-
Pozzi effect [6], among others. Quantum phase effects have
also been associated with certain types of laser light,
particularly Laguerre-Gaussian light, which is endowed
with quantized orbital angular momentum as well as pho-
ton spin [7]. The phase of light has been shown to influence
atomic gross motion due to the exchange of angular mo-
mentum between light and matter [7–9].

Less well known is the so-called Röntgen effect. This
arises whenever an electrically neutral system possessing
an electric dipole moment is in motion in the presence of a
magnetic field which may or may not be a static field. The
corresponding interaction has been shown to arise natu-
rally from canonical quantum electrodynamical theoretical
developments incorporating the motion of the atomic cen-
ter of mass as a dynamical variable [10]. Other effects that
have been predicted to arise from the motion of neutral
quantum systems concerns the rotational motion of a Bose-
Einstein condensate which has been predicted to induce a
magnetic monopole distribution or an electric monopole
distribution [11,12].

It was Wilkens [13] who first drew attention to the
significant point that the interaction energy associated
with the Röntgen effect in the presence of the vacuum field
was essential for preventing the appearance of spurious
velocity dependent terms in the evaluated spontaneous
emission rate for a moving atom. Recent work by
Boussiakou et a1. [14] and Cresser and Barnett [15] has
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confirmed that the Röntgen interaction energy is an im-
portant ingredient in developing a quantum electrodynami-
cal framework for the correct evaluation of the spontane-
ous emission rate of a moving atom, guaranteeing the
consistency of quantum mechanics with special relativity
in that context. In another paper Wilkens showed that a
quantum phase can be associated with the Röntgen effect
[16]. The emphasis on the quantum nature of the phase
furthered the perception that phase phenomena involving
charged particles or neutral atoms are entirely quantum
mechanical effects.

In a recent report, Boyer [17] questioned the emphasis
on the nonlocality feature exhibited by the magnetic
Aharonov-Bohm effect, namely, that the electrons experi-
ence no force along their paths, as the magnetic flux is
taken to be nonzero only in a small region of space away
from field-free paths sampled by the electrons. The mag-
netic field at every point of the electron paths, albeit small,
is nontheless nonzero, as pointed out earlier by Babiker
and Loudon [18]. The point made in Ref. [18] is that since
the magnetic flux lines of a solenoid of finite length are
continuous and so close onto themselves, the total mag-
netic flux passing though the entire central plane perpen-
dicular to the solenoid is zero. The flux on this plane
enclosed by trajectories which, at least in some parts, are
at finite distances from the solenoid is finite. Along such
paths, the magnetic field is nonzero and an electron expe-
riences a force at every point in its path.

In this Letter we show that, as a magnetic phase effect,
the Röntgen quantum phase shift can be arrived at using
arguments involving the concepts of force and its associ-
ated impulse due to the interaction of particles endowed
with an electric dipole in motion relative to a localized
source of magnetic field. Force arguments are, by defini-
tion, classical and, as will become evident, the Röntgen
phase shift admits a semiclassical derivation.

Consider a physical situation, similar to that considered
by Wilkens [16], in which the Röntgen effect is manifest. A
straight line of magnetic charge of linear charge density
�=� is aligned along the z axis, as shown in Fig. 1.
Particles bearing an electric dipole moment of magnitude
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FIG. 1. The interference experiment (schematic) involving the
Röntgen phase shift. The particles are endowed with electric
dipole moments d � dẑ pointing in the z direction and have
semicircular paths with a constant speed v � c, remaining at a
constant radial distance R from the magnetic charge line, shown
coinciding with the z axis. See the text for further clarification of
this figure in connection with the Aharonov-Casher phase shift.
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d pointing in the direction z (i.e., d � dẑ) emerge at a
constant speed v � c from a single source situated at the
point with Cartesian coordinates �R; 0; 0� and are made to
follow two semicircular paths, each of radius R in the xy
plane. Their interference pattern is detectable in the vicin-
ity of the Cartesian point ��R; 0; 0�, having each traversed
a semicircular path �R.

In the particle rest frame the magnetic flux density B due
to the magnetic line is perceived as an electric field. Since
the motion is confined to semicircular paths that are en-
tirely in the xy plane, it is convenient to use plane polar
coordinates. At a general point in the motion, as shown in
Fig. 1, the radial and azimuthal unit vectors are r̂ and �̂. We
can therefore write v � v�̂ and r � Rr̂, and the electric
field acting on the dipole is

E � v�B � v�
�0�

2��
r̂
R
� �

�
�0�v
2��R

�
ẑ: (1)

The interaction energy is U � �d � E. A dipole follow-
ing the upper path (to be referred to as �) experiences a
force F� � �rU. Since d � dẑ, this force points in the
radial direction and has the form

F� � r�d �E� �
�0�vd

2��R2 r̂: (2)

Associated with this force is a cumulative impulse vector
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I�. At a general intermediate point in the upper path for
which the polar coordinate is �, as shown in Fig. 1, at time t
this impulse vector is

I ��t� �
Z t

0
F��t0�dt0: (3)

Consider first the y component of this impulse vector. We
have

I�
y �t� �

Z t

0
F� � ŷdt

�

�
�0�vd

2��R2

�Z t

0
sin��t�dt

�

�
�0�d
2��R

�
�1� cos��; (4)

where, in the last step, we have converted the t integral to a
� integral and made use of the relation dt=d� � R=v.

The effect of this impulse component is to change the
speed of the particle in the y direction such that

M
�Y�

�t
� I�

y ; (5)

where M is the particle mass. This point-by-point change
of the speed, in turn, leads to a cumulative shift in the
particle displacement along the y direction over the entire
semicircular path, obtainable by integration. We have

Y� �
1

M

Z �R=v

0
I�
y �t�dt

�

�
�0�d
2��Mv

�Z �

0
�1� cos��d�

�

�
�0�d
2�Mv

�
: (6)

The corresponding Y� for the lower (�) path is obtainable
in an analogous manner. It has the same magnitude, but it is
opposite in sign. The difference in displacement along the
y direction between the (�) and (�) paths at the interfer-
ence region is

�Y � jY� � Y�j �
�0�d
�Mv

: (7)

On turning next to consider the consequences of the x
component of the impulse in Eq. (3) we find straightfor-
wardly that it leads to a vanishing cumulative shift in the x
direction, which is consistent with the symmetry of the
problem. Thus when the particles interfere in the vicinity
of the Cartesian point ��R; 0; 0�, their path difference is
just �Y, but the relevant quantity determining the Röntgen
phase shift is

�SR � Mv�Y: (8)

We therefore have
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�SR �
�0�d
�

: (9)

When divided on both sides by �h, the result in Eq. (9)
becomes identical to that obtained by Wilkens [16]. It is
this last step that confers the Röntgen phase shift with its
quantum signature, not withstanding the classical argu-
ments used in the earlier steps.

Our main conclusion is that the Röntgen quantum phase
shift can be arrived at using arguments firmly rooted in the
classical concept of force. The issue of nonlocality that
would commonly be associated with a magnetic quantum
phase phenomenon is noncontroversially absent in our
treatment since the phase shift emerges cumulatively as a
result of point-by-point local force effects along the par-
ticle paths.

Finally, it is interesting to check whether the Aharonov-
Casher effect can be treated along the lines above. In place
of the magnetic monopole line, as in Fig. 1, we assume that
we have a line of electric charge of density � per unit
length and the particles are endowed with a magnetic
dipole � � �ẑ. The electric field due to the line of electric
charge is

E �x; y� �
�

2��0R
r̂: (10)

In the particle frame this electric field is perceived as a
magnetic field B � �v�E=c2. The force would be F �
r�� � B�, and, apart from the differences in the constant
factors, we obtain the same expressions arising from the
steps leading from Eq. (1) to the displacement in Eq. (7).
Instead of the Röntgen phase shift (9), we obtain the
Aharonov-Casher phase shift

�SAC �
��

�0c2
: (11)

On dividing both sides by �h, this can be cast in the
Aharonov-Casher form

�SAC= �h �
2�g �h�
mc�

; (12)

where � � e=� and � � ge �h=2m, with g the gyromag-
netic ratio, e the electronic charge, and � � e2=4��0 �hc
the fine structure constant. Once again we see that the exact
result normally predicted quantum mechanically [5]
emerges from the above classical argument.

We have also verified by explicit evaluations that exactly
the same results in Eqs. (9) and (12) emerge using the same
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sources of field, if, instead of the paths described in Fig. 1,
we consider linear particle paths in the x-y plane, parallel
to the y axis with one on each side of the z axis.

The derivations given here might lead one to suggest that
the Röntgen and the Aharonov-Casher phase shifts are not
pure quantum effects, contrary to what is commonly under-
stood. However, the appearance of Planck’s constant, albeit
at the final stages of the derivations, does, in fact, confer
the quantal nature to both phase shifts. In this manner they
share their semiclassical connection with a number of
treatments of well known effects, such as the Planck’s
blackbody radiation law and the photoelectric effect, in
which contexts, too, Planck’s constant assumes an auxil-
iary role in their derivations.
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