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Predicting Mutual Entrainment of Oscillators with Experiment-Based Phase Models
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We show that mutual entrainment in interacting oscillators can be characterized using phase models that
are developed from direct experiments with a single oscillator. The models are used to predict order-
disorder transitions in populations and the dependence of order on system parameters; the description is
verified in independent experiments in sets of chemical oscillators. The experiment-based model properly
describes in-phase and antiphase mutual entrainment with positive and negative interactions in small sets
as well as dynamical clustering in populations of oscillators.
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FIG. 1. Waveform and response function of the oscillations in
metal dissolution experiments. (a) Electrode potential e�t� �
V � i�t�R as a function of phase �	�t�� for a smooth oscillator;
	�t� � 2
t=T, where T � 2:26 s is the period, t is the time from
the maximum of the oscillation, and V � 1:105 V is the circuit
potential. (b) Response function (or infinitesimal phase response
curve) (Z) of a smooth oscillator at V � 1:105 V. The response
function is obtained from the phase response curve (�� vs 	).
Phase advance (��) of the oscillations due to a short (8 ms)
perturbation of the circuit potential (with an amplitude of
�300 mV, resulting in �e � 40 mV change in electrode poten-
tial) as a function of phase was obtained. The phase advance was
calculated from the inherent (free-running) period and the period
observed during the perturbation cycle (Tpert): �� � 2
�1�
Tpert=T�. The response function is Z�	� � ���	�=�e.
(c) Electrode potential as a function of phase for a relaxation
oscillator (V � 1:275 V, T � 2:77 s). (d) Response function (Z)
of a relaxation oscillator (V � 1:275 V).
The characterization of synchronization of oscillators, of
importance in various physical [1], chemical [2], and bio-
logical [3] systems, can be a difficult and challenging task.
Complexity arises at hierarchal levels; changes in parame-
ters have effects on the characteristics of single oscillators
and consequently alter collective behavior in nontrivial
ways. A standard approach of system description, the
development of a model of the individual units and their
means of interaction, requires detailed knowledge of ki-
netic and transport processes. A complementary approach
is the use of a phase model [3,4] in which each oscillator is
represented by a single variable, its phase. A central ele-
ment of such models is an interaction function that char-
acterizes the extent of phase advance or delay as a result of
interaction between two oscillators [4,5]. Theoretical stud-
ies and numerical simulations have shown that phase mod-
els can capture the important synchronization properties of
populations with weak interactions [3,4,6–12].

In this Letter, we demonstrate the power of phase mod-
els, obtained solely from direct experiments on a single
oscillator, in predicting the dependence of synchronization
characteristics such as order-disorder transitions on system
parameters in small sets and large populations of interact-
ing oscillators. The interaction functions are obtained from
experimental phase response curves. We investigate the
parametric dependence of mutual entrainment using an
electrochemical reaction system, the electrodissolution of
nickel in sulfuric acid.

The experiments were carried out in a standard three
electrode electrochemical cell containing 3 mol=dm3 sul-
furic acid at 11 �C with a 1 mm diameter Ni working, a
Hg=Hg2SO4=K2SO4 reference, and a Pt counter electrode
[13]. The Ni electrode, connected to the potentiostat
through a series resistor R � 652 �, was held at constant
circuit potential V. Current i�t� was measured at 250 Hz.
Sets of two or 64 Ni electrodes were connected to the
potentiostat through one series (collective) resistor, Rs,
and through two (or 64) parallel resistors, Rp. The interac-
tion strength K � NRs=Rp was controlled through the
external resistors by keeping the equivalent (individual)
05=94(24)=248301(4)$23.00 24830
resistance Req � Rp � NRs � 652 � constant. (N is the
number of electrodes.)

Consider first a single oscillator. Two major character-
istic waveforms of periodic oscillations are the smooth and
relaxation types. In nickel electrodissolution both types
can be seen. At low circuit potentials [Fig. 1(a)] the wave-
form is smooth (nearly sinusoidal with constant angular
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FIG. 2. Experimental interaction function and its prediction of
mutual entrainment. (a)–(c) Interaction function H��	� (left
panel) and its odd part (right panel) at V � 1:105 V (smooth
oscillator), 1.245, and 1.275 V (relaxation oscillator), respec-
tively. (K � 1.) (d) Stability of the balanced clusters (�max) as a
function of the circuit potential. Solid circle: one-cluster. Open
square: two-cluster. �max is the largest (nonzero) value of eigen-
values �p of the cluster solutions of Eq. (1). The eigenvalues of a
balanced M cluster state of a system of N globally coupled
oscillators with interaction function H��	� are obtained [2,9]
as: for p � 0; 1; . . . ;M� 1: �p � 1=M"M�1

k�0 F
0�2
k=M��

�1� exp��2
ikp=M��; for p � M;M� 1; . . . ; N � 1: �M �

1=M"M�1
k�0 F

0�2
k=M�. F��	� � H���	�.
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velocity) whereas at large potentials [Fig. 1(c)] the oscil-
lations have a relaxation character in which a fast linear
deactivation is followed by a (initially slow) nearly expo-
nential increase. The circuit potential thus can be used to
tune the relaxation character of the oscillations in this
chemical reaction system.

The response function Z�	� [4,7] shows the phase ad-
vance per unit perturbation as a function of the phase of the
oscillator. The response function is proportional to the
phase response curve widely used in circadian rhythms
[5] to interpret external entrainment. As expected for a
simple smooth oscillator, the phase response curve in
Fig. 1(b) has a nearly sinusoidal shape. For the relaxation
oscillator the phase response curve [Fig. 1(d)] is more
asymmetric; in the linear deactivation region the system
is quite unresponsive (with smaller values of phase ad-
vance or delay); the system is more responsive in the
beginning of the excitatory state.

We obtain an experimental interaction function from the
response function for use in the phase model description:

d	i

dt
� !i �

XN
j�1

H�	j �	i�; (1)

where 	i and !i are the phase and frequency, respectively,
of the ith oscillator and H��	� is the interaction function
that depends on the phase difference �	 � 	j �	i be-
tween two oscillators. Equation (1) shows that the phase of
an oscillatory system increases at a rate equal to its inher-
ent frequency slightly modified by slowing down or speed-
ing up due to interactions with the other elements. The
interaction function can be calculated from the phase
response curve obtained with the variable through which
the oscillators are coupled [4,7]; here the electrode poten-
tial

H��	��
1

2


Z 2


	�0
Z�	�K�ej�	��	��ei�	��d	; (2)

where ej�	� and ei�	� are the waveforms of oscillators i
and j (here they are assumed to be identical), and K is the
interaction strength of linear difference coupling. The in-
teraction function at various phase differences is shown in
the left panel of Fig. 2(a) for the smooth oscillator; the
shape consists of �1� cos�	� and sin�	 components
characteristic of those found for an oscillator close to a
supercritical Hopf bifurcation [4]. The values of H are zero
at �	 � 0 and 2
 as a result of the diffusive nature of the
coupling. For most of the phase difference, H is positive
implying [from Eq. (1)] that the oscillators have a tendency
to speed up as a result of the coupling.

An important quantity for synchronization, the odd
(antisymmetric) part of the interaction function
H���	� � �H��	� �H���	��=2, is shown in the right
panel of Fig. 2(a). In a set of two coupled oscillators mutual
entrainment occurs at phase difference �		 given by
�!=2 � H���	

	�, where �! � !2 �!1 is the fre-
24830
quency difference of the oscillators. Mutual entrainment
of two identical oscillators with the interaction function of
Fig. 2(a) will occur at �		 � 0 and 
. Only the first of
these is stable; a positive slope of the odd part of the
interaction function at �		 implies stable and a negative
slope unstable entrainment [2,6]. Therefore, a set of two
oscillators with the interaction function shown in Fig. 2(a)
will be mutually entrained in an in-phase configuration
(with a phase difference close to zero).

The interaction function for the relaxation oscillator
[Fig. 1(c)] seen at a higher potential is shown in
Fig. 2(c). Compared to the smooth case [Fig. 2(a)] the
interaction function is more deformed with the maximum
shifted to larger �	 values. More pronounced changes
occur in the odd part of the interaction function which is
now a negative sine function with higher harmonic com-
1-2
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FIG. 3. Mutual entrainment of smooth and relaxation oscilla-
tors with positive (excitatory) and negative (inhibitory) coupling
in experiments. (a) In-phase entrainment of two smooth oscil-
lators with positive coupling. K � 0:25 (K is the strength of
electrical coupling), V � 1:105 V. Without coupling the fre-
quencies of the oscillators are !1 � 0:471 Hz and !2 �
0:466 Hz. (b) Antiphase entrainment of smooth oscillators
with negative coupling. K � �0:26, V � 1:105 V. [Negative
coupling was achieved with a negative differential resistance
(Rs < 0) feedback circuit built in the potentiostat.] (c) Antiphase
entrainment of two relaxation oscillators with positive coupling.
K � 0:30, V � 1:300 V. !1 � 0:157 Hz, !2 � 0:198 Hz. (A
30 � additional resistance was added to the electrode with
longer period; this additional resistance decreases the period
disparity between the oscillators.) (d) In-phase entrainment of
two relaxation oscillators with negative coupling. K � �0:32,
V � 1:300 V. (e) Stable one-cluster (left panel) and two-cluster
(right panel) state of a population of globally coupled oscillators
under the same experimental condition. K � 1:5, V � 1:265 V.
The two-cluster state was obtained from the one-cluster state by
a perturbation of the circuit potential at 	 � 0:5. (Amplitude:
�600 mV, length: 250 ms.)
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ponents. The change of the sign of the slope of the function
at zero intersections implies that stable mutual entrainment
would occur in an antiphase configuration at a phase
difference �		 � 
. This counterintuitive phenomenon,
relevant in neuron dynamics [14], is called dephasing [10].

The transition from smooth �H���	� � sin��	�� to
relaxation oscillations as the circuit potential is changed
takes place with the addition of strong higher harmonic
components. The odd part of the interaction function of a
weakly relaxational oscillator [at a circuit potential be-
tween those of the smooth and the relaxational regions,
Fig. 2(b)] is approximately H���	� � sin�2�	�. Both in-
phase (�		 � 0) and antiphase (�		 � 
) mutual en-
trainment states are stable; the attained state will depend
on initial conditions.

The interaction functions shown in Fig. 2 were calcu-
lated with positive (excitatory) coupling. With negative
(inhibitory) coupling there is a stability switch of the
entrained states; smooth oscillators prefer antiphase and
relaxation oscillators in-phase entrainment. The in- and
antiphase synchronization of relaxation oscillators due to
inhibitory and excitatory interactions has been a well-
studied paradox of neuroscience; it has been suggested
that a phase model description can be a useful tool for
interpreting the synchronization [15–17].

The experimentally determined interaction functions
can also be used to predict synchronization [4,5,11,12]
and clustering [2,8,9,18] in populations of identical and
nonidentical oscillators. (Clusters are groups of synchro-
nized oscillators.) The stability of the balanced clusters
obtained from the interaction function [2,9] as a function of
the circuit potential is summarized in Fig. 2(d) (calculated
with positive coupling). At lower circuit potentials where
the individual oscillation is smooth only the one-cluster
(fully synchronized) state is stable (�max is negative). As
the potential increases the interaction function changes and
the one-cluster state becomes unstable for V  1:275 V.
The two-cluster state, stable for V  1:215 V, is the typi-
cal behavior of a relaxation oscillator. For 1:215 V � V �
1:265 V, which lies between the smooth and highly relaxa-
tional regions, a bistability is predicted where both one-
and two-cluster states are possible (�max < 0). (At higher
potentials stable three and four clusters are predicted due to
the strong higher harmonic components of the interaction
function.)

The above predictions on mutual entrainment, using a
phase model obtained from experiments with a single
oscillator, are now tested in experiments with two and 64
globally coupled oscillators. Without added coupling the
oscillators are not synchronized and each has its own free-
running period. Positive coupling of two smooth oscillators
results in in-phase entrainment [Fig. 3(a)] and negative
coupling yields nearly antiphase entrainment [Fig. 3(b)];
on the other hand, highly relaxation oscillators produce
antiphase [Fig. 3(c)] and in-phase oscillations [Fig. 3(d)]
with positive and negative coupling, respectively. Of par-
ticular note is the nearly identical synchronization that is
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seen with the negative coupling. The effect of the negative
coupling is to increase differences in the potentials of the
coupled oscillators; nevertheless, the oscillators synchro-
nize at almost zero phase difference as correctly predicted
by the phase model. In the study of the population of 64
chemical oscillators, smooth oscillators synchronize in a
single cluster and relaxational oscillators in a two-cluster
state [13]. Experiments in a parameter region (V �
1:265 V) between these states, in which bistability is pre-
dicted, are shown in Fig. 3(e). A perturbation of the stable
one-cluster state [left panel of Fig. 3(e)] yields a stable
two-cluster state [right panel of Fig. 3(e)]. (A stable three-
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FIG. 4. Numerical simulations: interaction functions obtained
with an ODE model. (a)–(c) Interaction function (left panel) and
its odd part (right panel) at V � 15 (smooth oscillator), 24.77,
and 26.3 (relaxation oscillator), respectively. The interaction
function for the model was calculated with the software
XPPAUT [21].
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cluster was obtained at higher potential.) All the synchro-
nization behavior seen in the experiments with both two
and 64 oscillators are in agreement with the predictions of
the interaction functions obtained from experiments on a
single oscillator.

The interaction function is not constructed from ordi-
nary differential equations (ODEs) describing material and
charge balances but rather is obtained directly from the
experimental phase response curves. For the chemical
reaction system being treated here, however, there does
exist a two-variable ordinary differential equation model
[19] that captures the main dynamical features of the
system and which can be used as a comparison of the phase
model approach to the traditional approach using ODE
models to characterize synchronization. Interaction func-
tions obtained from the ODE model [20] for three repre-
sentative potentials are shown in Fig. 4. As in the
experimentally determined interaction functions shown in
Fig. 2, the interaction function has predominantly positive
values; with an increase of relaxation character the odd part
changes from a nearly sine wave [smooth, Fig. 4(a)]
through a sin�2�	� [moderately relaxational, Fig. 4(b)]
to an inverted sine wave with higher harmonics [strongly
relaxational, Fig. 4(c)]. The ODE model captures the
qualitative features of the synchronization during the tran-
sition from smooth to relaxation oscillators. Even in this
relatively well-understood system, however, the phase
24830
model is superior in two respects in that not only does it
not require detailed information on reaction kinetics and
transport properties, but it also reproduces the transitions
quantitatively. Therefore, the phase model approach can
have application in systems in which a quantitative de-
scription is required but where kinetic information is diffi-
cult to obtain. Our findings show that phase models,
derived with the assumption of weak coupling, hold in
physically important ranges of interaction strengths that
lead to mutual entrainment.

The method demonstrated here has application to vari-
ous fields. In neural systems experiment-based phase mod-
els could help determine the importance of intrinsic cell
properties on synchronization leading to essential or patho-
logical rhythmic behavior [15,16].
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