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Bacterial flagellar filaments can abruptly change shape in response to mechanical load or changes in
solution pH or ionic strength. These polymorphic transformations are an instance of a ubiquitous
phenomenon, the spread of conformational change in large macromolecular assemblies. We propose a
new theory for polymorphism, whose essential elements are two molecular switches and an elastic
mismatch strain between the inner and outer cores of the filament. We calculate the phase diagram for
helical and straight states, and the response of a helical filament to an external moment.
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The helical flagellar filaments of Esherichia coli and
Salmonella typhimurium provide striking examples of the
spread of conformational change through a macromolecu-
lar structure. These filaments consist of tens of thousands
of identical copies of a protein subunit called flagellin. It is
thought that the helical shape arises because the subunits
prefer to be in one of two inequivalent conformations [1,2].
Under normal physiological conditions and in the absence
of mechanical loading, wild-type filaments are left-handed
helices with a pitch of about 2.5 pwm and helical diameter
of about 0.5 um [3]. This state is known as the normal
state. Hydrodynamic torque can trigger polymorphic trans-
formations, in which a right-handed helical state invades
the normal left-handed state via the propagation of a front
[4,5]. Two right-handed states, called semicoiled and curly,
are typically seen in swimming bacteria [3]. The transition
from normal to semicoiled changes the swimming direc-
tion of the bacterium [3]. Discontinuous transitions be-
tween helical states can also occur due to changes in
solvent condition, such as pH [6]. Straight states [1] and
coiled states that are curved but not twisted [6] are also
observed.

In this Letter, we present a new theory for polymorphism
in bacterial flagella. Since it is impractical to calculate the
behavior of a filament using an all-atom approach, we
construct a coarse-grained continuum rod model that re-
flects the essential mechanical properties of the subunits.
Our theory addresses two questions, articulated by Asakura
[1]: (i) how can identical protein subunits form a helix, and
(i1) what is the mechanism for polymorphic transforma-
tion? In our theory, the helical shape arises from a mis-
match of the preferred lattice spacing of the protein
subunits in the inner and outer core. This picture leads to
an energy landscape with several minima corresponding to
straight or helical filaments. Changes in the material pa-
rameters or external load can change the relative energies
of the different minima, leading to transitions from one
state to another.

The flagellin subunits form a two-dimensional crystal on
the surface of the filament, which is about 20 nm in
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diameter. These subunits can be grouped into 11 protofila-
ments which gradually wrap around each other. To achieve
the variation in protofilament length required by the natural
helical shape of a filament, Asakura supposed that each
subunit has two stable conformations of slightly different
size [1]. If all subunits are in the same conformation, then
the filament is straight. Two straight states, L type and R
type, have been observed [7]; the period of the subunits
along the protofilaments is 0.8 A shorter in R type thanin L
type. Since the protofilaments wind around the filament, a
helical filament results when some of the protofilaments
are in the short state, and some are in the long state.
Calladine developed this idea further by modeling the
subunits as linear springs with two rest lengths, and show-
ing that the curvature of a filament varies sinusoidally with
the number of protofilaments in the short state [2].
Electron microscopy has shown that the filament cross
section consists of outer domains surrounding a core with
outer and inner regions [8]. Both the outer core and the
inner core are crucial for polymorphism. Mutations in the
outer core can change the helical pitch and radius of the
ground state [9]. Without the inner core, there is no poly-
morphic behavior, and the filaments are straight [10].
X-ray crystallography [11] and high-resolution electron
cryomicroscopy [12] studies have led to the suggestion
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FIG. 1. (a) Filament element with €; = € = €. The gray lines
represent the strands and the black disk represents a cross section
of the central spring. (b) Filament element with € = €, and a
variation in the stretch €; of the strands. (c) Gray curve: energy
vs stretch for a protofilament; black curve: energy vs stretch for

the central spring (dimensionless units). For the situation in (c),
(b) has lower energy than (a).
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that there are two molecular switches underlying flagellar
polymorphism: a highly cooperative switch for curvature,
arising from the two slightly different subunit conforma-
tions, and a switch for twist, arising from lateral inter-
actions between neighboring protofilaments [12].

Our aim is to create a continuum rod model for the
flagellar filament, guided by these observations. The ele-
ments of our model are shown in Fig. 1(a). We approximate
the filament structure by 11 strands wrapped around an
elastic inner core. A strand is a nonlinear spring in the outer
core, in contrast with the full protofilament which includes
material in both the inner and outer cores. Each strand has a
double-well potential (per unit length) for stretching,

u
U, = Z(e? — &) (1)

where €; is the strain of the ith strand [Fig. 1(c)]. The
potential Ug; has stable minima at €; = * €, correspond-
ing to the two conformations of a subunit. Since the
difference in subunit spacing for L type and R type is
=~(.1 nm, and the subunit spacing is = 5 nm, we estimate
2e, = 1/50. Because the two conformations are not
symmetry-related, we do not expect the energy to have
€ — —e symmetry. We consider the simplest case of a
symmetric potential for purposes of illustration.

The inner core acts like a linear spring, with an elastic
stretching energy per unit length

1
Uy = EkS(e — €)* ()

where € is the strain of the inner core and ¢, is the preferred
strain. When €} # €3, the central spring and the nonlinear
springs have different preferred extensions, leading to an
elastic mismatch strain.

To determine the strain of the strands given a configu-
ration of the filament, we assume that planar cross sections
remain planar when the filament is bent, twisted, or
stretched (cf. [2]). These conditions are conveniently en-
forced using a material orthonormal frame {€ ,}, where &;
is the tangent vector of the filament, € lies in the plane of
the cross section and points from the center of the filament
to the first protofilament, and €, = €; X &;. When the
filament is bent or twisted, the frame {&,} rotates as the
arclength s increases: dé,/ds =k X &,, where k=
k,€,, K and k, are the components of the curvature
vector k| = k,€, — k€,, and kj is the twist. We relate
the position of a material point r; at radius a on the ith
protofilament to the position of a point r,, on the centerline
of the rod by r; =r. + acosB;€, + asinf;é,, where
B; = 2a(i — 1)/11. Here a is chosen to be the radius at
which the lattice structures of the straight filaments are
reported [13], not the actual radius of the filament. Since
a = 4.5 nm and the magnitudes of the «,, are all of order
1-10 pwm™!, the strain is small, k ,a < 1.

Now consider a filament which is bent, twisted, and
stretched. To compute the strain in each strand, let S label

material points of the inner core, and d/; denote the length
element of the ith strand: dl; = (dr;/dS - dr;/dS)"/?ds.
(The distinction between s and S must be recognized when
computing the stretching strain. However, since € < 1, we
may approximate ds = (1 + €)dS = dS in the measure for
the energy integral and in the derivatives of the cooperative
term described below.) To first order in (€, ak ), the strain
€, = (dl; —dS)/dS = € + akx, sinB; — ax, cosB;. The
twist does not appear since the angle between a protofila-
ment and the longitude is small. However, lateral bonds
between neighboring protofilaments lead to a twist-stretch
coupling. This coupling will be disregarded here but
treated in a later paper [14].

The total stretching energy per unit length of all the
strands is Uy = XL, Uy, or

U, = T[(ez — )+ (B — e)a’k? + 2a4k4} 3)
where the curvature k = |k | |. Stretching resistance of the
strands leads to bending resistance of the filament. The
bending energy is isotropic, as expected for a cross section
with symmetry higher than twofold.

The switch for twist in our model arises from a double-
well potential per unit length (cf. [15]),

1 _
U, = U|:Za4(K% L v1a4QI3,K3} “

where we estimate (), =~ 1-10 um~ L. Here we consider
the simplest asymmetric double-well potential; ©; deter-
mines which well has lower energy.

Guided by the work of [11], we suppose there are
cooperative interactions that give an energy penalty when
neighboring subunits in the same protofilament are in
different conformations (cf. the cooperative energy for
twist of [15]). In the continuum limit, this penalty is U, =

(/2 S0 (de /S = (0/2) 511, (e, /ds)2 or,
11 2
s ERE AT B

where the prime denotes differentiation with respect to s.
To interpret U, it is convenient to introduce the angle f
from k| to €,. Since k; = —kcosf and k, = ksinf, we
have k2 + k%2 = k> + k*(7 — K3)?, where the torsion 7 is
related to twist by 7 = k3 — f’. Thus, the cooperative term
U, obtains its absolute minimum when € and « are uni-
form, and when the rod is either straight, x = 0, or has
torsion equal to the twist, 7 = k3. These conditions are
necessary to achieve constant €;. Since the curvature « and
twist k3 do not uniquely determine the path of the center-
line, the cooperative energy is crucial for defining the
ground state of the filament.

The total energy is E= [ds[U. + U, + U, + U], where
we have approximated dS = ds. In this Letter we will
consider the simplest case of an inextensible filament,
k, — oo, which implies € = €. The behavior of the model
in this limit is qualitatively similar to that of the full model.
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First we determine the ground states as a function of €, and
v. We limit the discussion to helical and straight shapes,
and neglect end effects.

With the condition k3 = 7, the state of the filament is
determined by minimizing the energy with respect to x and
K3, with € = €. Inspection of (3) reveals that the filament
is straight when |eo| = €,/ V3, and curved with «2a? =
kja®> = 4(€2/3 — €}) when || < €,/+/3. To see why
curved filaments arise, consider the stretching energy for
a short segment of the filament (Fig. 1). If €y = €, then
€; = €, for all i minimizes the energy, and the filament is
straight. If €, = 0, then the straight state with €; = 0 is
unstable, since the energy U; of each of the 11 strands is at
a local maximum [see Fig. 1(a) and 1(b)]. Stretching or
compressing all 11 strands to make €; = * €, will raise the
energy of the inner core for finite k¢ and is impossible for
kg — oo. The compromise that lowers the energy is to
bend the element, maintaining the inner core at € = (
[Fig. 1(b)]. Thus, curvature arises from an elastic incom-
patibility of the inner and outer core.

Minimizing the energy over twist leads to the condition

(k3/Qp) = k3/Q, = 9. (6)

Thus, the twist undergoes a discontinuous transition as v
varies. Note that the curvature does not jump. If we had
included the twist-stretch coupling mentioned above, both
the curvature and twist would jump at a transition; a twist-
stretch coupling also allows discontinuous transitions from
helical to straight states [14].

Figure 2 shows the phase diagram for filament shape in
terms of the parameters v and €, governing the molecular
switches. In the gray band it is energetically favorable for
the filament to bend into a helix. The solid vertical line
¥ =0 marks the discontinuous transition from «3 = —{1,
to k3 = (),,. The twist potential has two minima, one stable
and one metastable, in the region between the vertical
dash-dot lines.

Figure 3 shows how the minimum-energy shape of a
filament changes as v; and €, are varied along the path of
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FIG. 2. Phase diagram for ground states. The vertical solid line
separates left-handed and right-handed states. The vertical dash-
dot lines define the limits of metastability for the twist potential.
The diagonal line traces out the values of ¥; and €, used to
calculate the curvature vs twist plot of Fig. 3.

the diagonal line in Fig. 2. The filament is first left-handed
and straight, then undergoes a transition to a curved state
(Py). The curvature and twist change continuously through
this transition. However, the curvature rises so steeply after
Py that it could appear to jump. As we continue along the
diagonal line of Fig. 2, we reach the discontinuous tran-
sition at o, = 0 (P,, P3). At this point, the minimum-
energy twist jumps to a right-handed value. (Metastable
branches are also shown in Fig. 3.) As €, continues to
decrease along the diagonal line, the filament eventually
undergoes a continuous transition to a straight state (P3). In
contrast with the theory of Calladine [2], our theory does
not predict a universal relation between curvature and
twist, nor does it predict a discrete set of states. A crucial
test of our theory would be to observe the change in shape
of a single filament as external conditions are varied.

To study the response of the filament to an external
moment analytically, we take v, = 0, and limit the dis-
cussion to helical solutions. Since the moment M = M2
defines a natural space-fixed direction, we use Euler angles
to parameterize the material frame. In the convention of
Love [16], {€,,} is generated from a space-fixed frame by
first rotating by ¢ about Z, then rotating about the image of
¥ by 6, and then rotating by ¢ about the final image of Z.
Thus, a helix has parametrization

r(s) = <Sll;,0 sin(yf's), —
with 6 and ¢’ constant. Note that helix handedness depends
solely on the sign of . To find the shape, we use the prin-
ciple of virtual work, 8E — M - [8Y(L) — 6Y(0)] =0,
where 6Y,, = —€,,,€, - 6€, is the infinitesimal rotation
of the frame {€ ,} at s = L and s = 0. Taking the variations
for arbitrary functions ¢, 0, and ¢, and then specializing to
the case of constant § and ¢/, we find ¢’ = 0 and

sinf

7 cos(z,lt’s),scos&), (7

M
' sinf(%sin’6 — k) = -3 sinf, (8)
/cosB(eos8 — 02) = L cosh 9
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FIG. 3. Curvature vs twist, in dimensionless units. The solid
line corresponds to minimum-energy states; the dashed lines
correspond to metastable states. The parameters ©; and €, vary
along the diagonal line of Fig. 2.

248101-3



PRL 94, 248101 (2005)

PHYSICAL REVIEW LETTERS

week ending
24 JUNE 2005

0.0 Q
4

-1.0

-1.0 0.0 1.0 m

FIG. 4. Signed curvature «, vs moment m, in dimensionless
units, for i = v, 6y = 32°. The solid line is the right-handed
branch, and the dashed line is the left-handed branch (cf.
Figure 5).

We have defined i = 33u/8 and used the constancy of ¢
to choose ¢ = 7r/2, which implies k; = 0, k, = ¢ sin,
and k3 = ¢’ cosf. Eqgs. (8) and (9) reduce to /o> —
Y'/o = m and

2
§in20 = —— + (sin200 - )"— (10)
i+v i+v)y?
with o2 =«} + Q2 tanfy = ko/Q,, and m =
(&t + v)M/(iivo3a*). Note that (8) and (9) do not deter-
mine the sign of @; for every M, there are two physically
different solutions related by «, — —k,. For example,
consider a filament in the plane # = 7/2 with a bistable
potential for curvature but no twist. For zero external mo-
ment the filament will be an arc of a circle with either sign
of k,; suppose x, > 0. Applying a moment to decrease the
curvature will cause the filament to first deform smoothly,

and then snap into a shape with x, < 0.

There is a rich array of possibilities for polymorphic
transitions under an external moment [14]. We consider in
detail only the case of # = v with §, = 32°, the approxi-
mate pitch angle of the normal state. Zero external moment
corresponds to the point Q4 in Figs. 4 and 5. As the moment
increases, the shape changes smoothly through metastable
states until Q,, where both k, and k3 jump to the values at
0s. In this case, kK, =0 at Q,; when 6, >45°, Kk, is
nonzero at the transition. As the moment increases further,
the shape continues to change smoothly. If the moment
then decreases, the shape deforms smoothly until Q,,
where there is another transition in k, and «3.

To conclude, we have introduced a new continuum
model for flagellar filaments that accounts for the alternate
stable conformations of the protein subunits. The predic-
tions of the model differ from those of previous models
[2,15], and may be readily tested by new single-molecule
experiments on the response of a single filament to changes
in solvent condition and end loading.

0.8
& //
c (0
04 3
0,
0.0
0.4 .
- i Q2
0.8] < @)
-1.0 0.0 1.0 m

FIG. 5. Twist k3/0 vs moment m, in dimensionless units, for
@i =vand 6, = 32°.
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