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Ground State of Two-Dimensional Finite Electron Systems in the Quantum Hall Regime
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We study electronic structures of quasi-two-dimensional finite electron systems in high magnetic fields.
The solutions in the fractional quantum Hall regime are interpreted as quantum liquids of electrons and
vortices. The ground states are classified according to the number of vortices inside the electron droplet.
The theory predicts observable effects due to vortex formation in the chemical potentials and magneti-
zation of electron droplets. We compare the transitions in the theory to those found in electron transport
experiments on a quantum dot device and find significant correspondence.
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Studies of finite two-dimensional electron systems in
high magnetic fields often get their inspiration from the
remarkable physics of the quantum Hall effect in two-
dimensional electron gas [1]. Considerable experimental
and theoretical work has been carried out, in particular, on
quantum dots, two-dimensional droplets of electrons in the
interface region of semiconductor heterostructures [2–5].
Electron transport measurements of quantum dots have
revealed a rich variety of transitions associated with charge
redistribution within the electron droplet in high magnetic
fields [6]. This has led to the development and study of
theoretical models which could account for the micro-
scopic origin of these phenomena [7–10]. Recently a pro-
posal has been put forth that the observed phenomena may
be caused by the emergence of a special state of electronic
matter, a quantum liquid of strongly correlated electrons
and vortices [11–14]. In the present work we use this
approach to classify the ground states of the two-
dimensional electron droplets in quantum dots and com-
pare transitions to those found in electron transport mea-
surements. Our results give also general insight into the
internal structure of the many-body wave function of finite
two-dimensional electron systems.

Vortices, rotational flow of currents or matter with a
characteristic cavity at the center, can be found in various
natural phenomena where particles have been set to rotate
around a common axis. Descriptions of vortices exist since
antiquity [15]. In two-dimensional quantum systems a
vortex can be defined in analogue with classical vortices
as a zero in the wave function associated with a phase
change of the integer multiple of 2� for each path enclos-
ing this zero. In quantum dots the rotation of electrons is
induced by external magnetic field and vortices may form
if this rotation is strong. Vortices are caused by quantiza-
tion of the magnetic flux through the electron droplet, and
they give rise to rotating currents of charge around density
zeros inside the electron droplet. Vortices create charge
deficiency inside the electron droplet which manifests
itself as an increase of the dot area [7,8]. This theory has
been based on electronic structure studies of quantum dots
[11,13,14] as well as on theoretical analogies with bosonic
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systems of rotating Bose-Einstein condensates [12].
Vortices in electron droplets are not necessarily bound to
electrons as approximated by the Laughlin wave functions.
The analysis of the internal structure of the many-body
wave function suggests the introduction of a more general
framework of an interacting system of electrons and off-
electron vortex quasiparticles, where vortex formation is
driven by interactions [14,16].

We use an effective-mass approximation in the xy plane
to model the physics of a quasi-two-dimensional system of
trapped electrons in vertical quantum dot devices. The
electron-electron interaction is approximated with a
Coulomb potential. The Hamiltonian is then
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where N is the number of electrons, Vc is the external
confining potential, m� is the effective mass of electrons
moving in a semiconductor medium, � is the dielectric
constant, and A is the vector potential of the homogeneous
magnetic field which is oriented perpendicular to the xy
plane. In the subsequent discussion the external potential is
chosen to be parabolic Vc�r� �

1
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In this Letter we use both the mean-field spin-density-

functional theory (SDFT) and the variational quantum
Monte Carlo (VMC) method to calculate the electronic
structure in the quantum Hall regime. We use the SDFT in
conjunction with local spin density approximation (LSDA)
with a smooth correlation functional [17]. For details of the
implementations we refer to Refs. [11,18]. In high mag-
netic fields the electron droplet is spin polarized and a
stable structure called the maximum density droplet
(MDD) forms [19]. It is a finite-size precursor of the
integer � � 1 quantum Hall state. Evidence for the MDD
formation has been reported in the experiments [5,6].
When the magnetic field is increased in the measurements,
the MDD breaks down into a lower density droplet in the
fractional quantum Hall (FQH) regime.

Theory predicts that in parabolically confined quantum
dots the ground states in the beyond-MDD (FQH) regime
occur only at certain ‘‘magic’’ angular momentum values
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[20]. As a result, the angular momentum as a function of
the external magnetic field shows a characteristic staircase
structure. In the MDD breakdown the angular momentum
increase with respect to the MDD state �L � L�
L�MDD� strongly depends on the number of electrons in
the system [18]. For N � 12 the electron in the center is
moved to the outer edge giving �L � N and a vortex hole
emerges at the center of the dot. For N > 12 a vortex
emerges at a finite distance from the center [8]. This
change in the breakdown mechanism means that vortices
in large electron systems tend not to localize. However, if
the symmetry of the external potential is broken, localized
vortices may form in the particle and current densities [14].
High angular momentum states correspond to multivortex
configurations in the FQH regime. Since they are beyond
reach for exact diagonalization techniques for N > 10, we
use the SDFT to analyze the electronic structure of these
states.

In the experimental realizations of quantum dots the area
of the dot has been found to increase with the gate voltage,
suggesting that the electron density in the dot remains
constant [21]. In zero magnetic field this implies a confin-
ing potential that scales as �h!0 	 N�1=4 [22]. However,
the magnetic field exerts an additional squeezing effect on
the electrons, which is counteracted by interactions. We
have found that approximately constant electron density in
the calculations is obtained by a potential scaling �h!0 	

N�1=7. Figure 1 shows phase diagrams of the ground states
in the SDFT. The ground states are classified according to
the number of vortices inside the electron droplet by using
conditional single-determinant wave functions constructed
from Kohn-Sham orbitals [23].

For qualitative understanding of the structure of the
phase diagram we interpret the solutions in the FQH do-
main as a quantum liquid of electrons and holelike vortex
quasiparticles. The MDD state assigns one Pauli vortex at
each electron position. As the MDD reconstructs the num-
ber of vortices in the system increases by one and subse-
quent transitions involve the emergence of more off-
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FIG. 1. Mean-field SDFT phase diagrams of the ground state
of parabolically confined electron droplets in high magnetic
fields. The ground states are classified according to the number
of vortices inside the electron droplet (gray scale). The confining
potential is �h!0 � 5 meV in (a) and 7:67N�1=7 meV in (b). In
the upper right hand corner of the right diagram the number of
vortices is greater than 8.
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electron vortices. Since vortices carry magnetic flux quanta
�0, the MDD state breaks down approximatively when the
magnetic flux � � BA through the MDD of area A ex-
ceeds �N � 1��0 and an additional off-electron vortex
emerges in the electron droplet. The compactness of the
MDD state and the observed constancy of the electron
density n with respect to N gives N � nA and B � �1�
1=N��0n for the MDD reconstruction. The upper bound-
ary of the MDD is therefore approximatively constant for
high N in accord with the experiments [6]. With the
addition of one vortex in the MDD the relative increase
of the dot area is approximately 1=N. This increase of the
dot area via vortex formation counteracts the squeezing
effect of the magnetic field. Assuming now a constant n for
the beyond-MDD states, the change in required for the
addition of subsequent off-electron vortices in the droplet
is approximately �B � �0n=N. The calculations show
that widths of the different vortex phases are to a good
accuracy inversely proportional to N which gives credence
to this simplified picture [see Fig. 1(b)]. The above reason-
ing implies also that constancy of the electron density in
the droplet leads to narrowing of the MDD window for
high electron numbers. The lower boundary of the MDD is
determined from either polarization of the electron droplet
or the flipping of one vortex from parallel to antiparallel
orientation with respect to the magnetic field. The latter
condition involves a constant flux change of 2�0 with
respect to the MDD state. This leads to narrowing of the
MDD window because the area of the droplet increases
with N in a totally polarized system. However, for realistic
Zeeman-coupling strengths the electron droplet loses total
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FIG. 2 (color online). Current peaks in the electron transport
experiments and transitions in the SDFT (red lines). The dashed
lines denote the MDD boundaries. The right dashed line and the
dotted lines correspond to transitions associated with the emer-
gence of off-electron vortices one by one inside the electron
droplet. The experimental data are from Fig. 2b in Ref. [6].
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spin polarization in the low-field limit before antivortices
emerge. This shrinks the MDD window further.

We now compare these theoretical results with experi-
mental data from electron transport measurements.
Oosterkamp and co-workers measured electron transport
through a vertical quantum dot device in the quantum Hall
regime [6]. Up to this date these experiments give the best
available electron transport data for a single-dot device.
Figure 2 shows chemical potentials in these experiments
for electron numbers N � 12 to 39, the MDD window
boundaries in the SDFT as well as the transitions associ-
ated with the emergence of off-electron vortices. The gate
voltage dependence of the external confinement in the
quantum dot device is taken into account by using confin-
ing potential �h!0 � 5:70N�1=7 meV in the SDFT. For
material parameters we use m� � 0:067, � � 12:4, and
effective gyromagnetic ratio g� � �0:44. Despite the sim-
ple form of the interelectron potential in our theoretical
model, the transitions in the beyond-MDD domain fit well
into the experimental data. This can be understood from
the fact that the transitions are induced by the magnetic
flux quantization through the relatively compact electron
droplet. In Fig. 3 the chemical potential of the 24-electron
quantum dot is calculated with the SDFT, the VMC simu-
lation, and the exact diagonalization in the lowest Landau
level (LLL). The results are compared to the experimental
data in Ref. [6]. The correspondence between the theory
and experiments is good, and different quantum Hall re-
gimes can be identified by comparing the two sets of data.
We find also that the theoretical results are consistent with
the observed narrowing of the MDD window from about
1 T at N � 20 to 0.5 T at N � 39 (see Fig. 2). In the SDFT
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FIG. 3 (color online). Chemical potential of the 24-electron
quantum dot calculated with the SDFT and compared to the
experiments from Ref. [6] and VMC and LLL exact diagonal-
ization results in the vicinity of the MDD window. Noise in the
experimental data has been reduced by using a Gaussian filter.
The numbers between the arrows indicate the total spin. The
roman numbers between the triangles indicate the number of
vortices inside the electron droplet in the fractional quantum
Hall regime. Charge-density-wave solutions in the SDFT (dotted
line) have been discarded as unphysical.
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the partially polarized states in the spin-flip region have a
MDD-like compact structure for both orientations of the z
component of the spin. Therefore the states before the
MDD around 6 T for high N in Fig. 2 could be partially
polarized states, and the MDD window may be smaller
than that identified in Ref. [6]. In theory the increase in the
dot area at the MDD breakdown is approximately 1=N �
3:3% at N � 30. This can be contrasted to around 10%
reported in the experiments [6]. However, uncertainty in
the experimental result is high, and there exists no analysis
of a possible N dependence [24].

The electron transport data show features that may be
due to correlation effects beyond our mean-field SDFT.
These may include the transition associated with the open
triangle in Fig. 3 and fluctuations in the data between the
second and third triangles. In addition, the LLL theory of
Ref. [9] suggests that for small particle numbers (�100),
the first ground state after MDD would have partial spin
polarization. However, higher Landau levels might have an
effect on this [25]. In actual quantum dot realizations,
effects due to finite thickness of the electron gas, screening
of the interaction potential, image charges, and nonpara-
bolic terms in the external potential may also cause devia-
tions from our results [26].
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FIG. 4 (color online). (a) Ground state magnetization per
electron calculated with the SDFT. The confining potential is
7:67N�1=7 meV. The beyond-MDD states are characterized by a
plateau region in this plot, where magnetization per electron is
close to ��

B. The dashed and the dotted lines correspond to the
same transitions as in Fig. 2. (b),(c) Detail plots of the oscil-
lations in the magnetization of the 5-electron and 24-electron
droplets, respectively. The finite-size precursor of the � � 1=3
quantum Hall state is identified by using conditional wave
functions [11]. The confinement strength is 5 meV in (a) and
3.62 meV in (b). The oscillations in plot (a) are smoothed out due
to use of finite temperature.
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In the electron transport experiments the slope of the
chemical potential is the magnetization difference
M�N;B� �M�N � 1; B�, where M � �@E=@B. Since
the magnetic field couples to the angular momentum L,
there is a jump in the magnetization at transitions associ-
ated with change in L. In the MDD state the angular
momentum increases with N as N ! N � 1. Therefore
the slopes of the chemical potentials in the MDD domain
show a typical decreasing pattern as N increases at fixed B.
SDFT calculations indicate that magnetization per electron
in the FQH regime is close to the effective Bohr magneton
��

B � me=m��B � 0:864 meV=T (see Fig. 4). This is a
consequence of the emergence of additional vortex quasi-
particles in the electron droplet as the magnetic field
increases. This behavior gives rise to positive slopes in
the chemical potentials in the beyond-MDD domain which
is in accord with experimental data (see, e.g., slopes of the
chemical potentials at B � 9 T in Fig. 2). Detail plots of
the magnetization for N � 5 and N � 24 in the mean-field
theory [Figs. 4(b) and 4(c)] reveal also oscillations in the
droplet magnetization as the number of vortices increases
one by one [14]. The sawtoothlike oscillations in lower
magnetic fields in Fig. 4(c) are manifestations of the
de Haas–van Alphen effect. The overall behavior is similar
to that found in direct measurements of magnetization of
dot mesas [27]. This method could also provide a way to
detect oscillations in the FQH regime.

To conclude, we have performed theoretical calculations
for finite electron droplets in the quantum Hall regime. Our
model theory predicts the emergence of a quantum liquid
of electrons and off-electron vortices in high magnetic
fields. The pattern of transitions found within the theory
is consistent with experimental data from electron trans-
port measurements. However, for greater qualitative under-
standing of the phenomena, we call for more accurate
electron transport experiments in the quantum Hall regime,
more accurate computational methods, and more realistic
modeling of quantum dot systems in the case of many-
electron systems. It has been suggested that the addition of
cusps to smooth LSDA functionals incorporates more FQH
correlations [28]. Another approach towards testing of the
validity of theoretical predictions could be a direct visual-
ization of the electron density in a quantum dot. Recent
developments with scanned probe imaging techniques
[29,30] could yield a way to image localized vortices in
electron droplets.
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