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We analyze symmetries of spin transport in two-terminal quantum waveguide structures with Rashba
spin-orbit coupling and magnetic field modulations. Constraints, imposed by the device structure, on the
spin polarization of the transmitted electron beam from the waveguide devices are derived. The results are
expected to provide accuracy tests for experimental measurements and numerical calculations, as well as
guidelines for spin-based device designs.
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Introduction.—The electrical generation of a spin-
polarized current is one of the essential goals in semicon-
ductor spintronics and has stimulated considerable theo-
retical and experimental efforts [1]. Most of them so far
have focused on spin injection into nonmagnetic semi-
conductors from a polarized source made from, e.g., fer-
romagnetic metal (FM) or magnetic semiconductor
materials, while some theoretical works have suggested
methods of creating spin currents out of an unpolarized
source. In the latter case various spin-related transport
phenomena are utilized to generate an uneven spin distri-
bution in the transmitted electrons. Of special interest is the
relativistic spin-orbit interaction (SOI) [2,3] with tunable
strength [4–7], which entangles spin states of charge car-
riers with their space motion. It has been shown theoreti-
cally that the SOI can be employed to generate spin
polarization in a T-shaped structure [8] and even a pure
spin current in a Y-shaped junction [9].

In this work we investigate spin-dependent electron
transport and spin filtering behavior in a two-terminal
quantum waveguide structure under a local SOI and mag-
netic field modulations. We focus our study on the analysis
of symmetries. There is no doubt that symmetries are of
great importance, since, once established, they can provide
sample tests of experimental and numerical accuracies and
greatly reduce the amount of data which has to be taken or
calculated. The symmetry relations can also provide guide-
lines for the design of spin-based devices. In this work, we
endeavor to establish a few basic relations, imposed by the
symmetries, for the spin-dependent scattering parameters
in the two-terminal multimode waveguide structure. But
for the sake of completeness we first give a short descrip-
tion of the model and formalism employed.

Model and formalism.—We consider a multimode quan-
tum waveguide defined by the lateral confining potential
Vc�x; y� on a near-surface two-dimensional electron gas
(2DEG) in the (x; y) plane, subject to the modulations by a
local magnetic field. The 2DEG is assumed to be formed in
an asymmetric quantum well, where the SOI is contributed
dominantly by the Rashba mechanism [2]. The Rashba
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strength can be tuned by one or more external gates [4–
7]. The magnetic field is assumed to be flat in the y
direction and to be inhomogeneous on the nanometer scale
along the x axis, which can be created by, e.g., deposing
patterned FM or superconducting materials on top of the
waveguide [10,11]. The device is assumed to connect with
two ideal leads with vanishing SOI and magnetic field. The
model Hamiltonian describing such a system has the form
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where � � p� eA is the canonical momentum with A
the vector potential, m�, �e, and g� are, respectively, the
effective mass, charge, and effective g factor of electrons,
�0 is the 2� 2 unit matrix, � � ��x; �y ; �z� is the vector
of the Pauli matrices, and
B the Bohr magneton. Two SOI
terms are included in Eq. (1),
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which arise from the interfacial electric field and the con-
fining potential, respectively [12,13]. Here ẑ is the normal
of the 2DEG plane and � is the in-plane SOI constant. A
symmetrized form for the SOI terms is adopted in Eq. (1) to
account for the situation that the Rashba strength � and/or
the in-plane electric field rVc=e is a function of position
[13,14]. The velocity operator can be derived directly from
v � @H=@p, whose x component in the leads has a simple
form, vx � �px=m

���0.
The spin quantum axis is chosen to be along ẑ. In lead �

(� � L for the left lead or R for the right lead), the
eigenwave function  can be constructed as a linear com-
bination of the propagating modes in the same lead,

 � �
X
n�

�a�n����
n� � b�n����

n� �: (3)

Here ���
n� (���

n� ) is the nth right-going (left-going) prop-
agating mode in the lead �, with a spin state vector ���� �
�1; 0�T [for � �" ��1�] or �0; 1�T [for � �# ��1�]. The
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number of propagating modes in each lead is determined
by the electron energy E and the lead parameters. All
propagating modes are normalized with their velocities,
so that the outgoing amplitudes, fbLnL�Lg and faRnR�Rg, are
related with the ingoing ones, faLn0L�0

L
g and fbRn0R�0

R
g, through

a scattering matrix S,
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Here tnR�R;n0L�0
L

represents the transmission amplitude for
electrons incident from the state (n0L�

0
L) in the left lead

scattered into an outgoing state (nR�R) in the right lead.
The other three blocks in the matrix S have similar mean-
ings. In writing Eq. (4) we adopted the Einstein’s sum rule.
However, the summation should only be taken over prop-
agating modes in the leads. The current conservation leads
to the unitary condition of the S matrix, S�S � 1, which
gives
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Assuming that electrons are incident from the left lead,
the spin-dependent two-terminal conductance at zero tem-
perature is given by summing over the transmission prob-
abilities [15],

G�R�L �
e2

h

X
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2 : (6)

The total (charge) conductance, G � ��L;�RG�R�L , can be
written as

G � �
e
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where  R;nL�L�r� is the outgoing state corresponding to
electrons incident from the mode (nL�L) in the left lead.
The spin conductance with respect to a given direction n
can be defined in a similar way [16]
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where vsx�n� � �vx�

h
2� � n� � � 
h2� � n�vx�=2.

The spin polarization of the generated current in the
right lead can be viewed as the ratio between the normal-
ized spin conductance, �Gs

x; Gs
y ; Gs

z�=��e=4&�, and the
normalized total conductance, G=�e2=h�. It can also be
experimentally measured as the quantum-mechanical aver-
ages of the spin angular momentum of electrons,
24660
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where '̂s is the spin density operator of the transmission
current in the right lead [17]. The two kinds of definitions
are equivalent and give the following expressions:
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It can be seen that Px (Py) may be finite only when spin-
flipping scattering occurs.

It should be stressed that the polarization has a vector
nature: along a given direction n it is given by Tr�'̂s� �
n� � P � n. When n coincides with the spin quantum axis
for which '̂s is diagonal, the polarization has only one
nonzero component and can be expressed as P � �G" �
G#�=�G" �G#�. This definition has been adopted in most
studies of spin-conserved transport.

Symmetries.—Symmetry of spin-independent electrical
conduction has been extensively studied in the last two
decades [15,18,19] and still is a subject of current interest
[20]. For spin-dependent electron transport, symmetry
analysis has been made for quasi-one-dimensional systems
[8,21] and, in most cases, without including any magnetic
field. Here we consider multichannel cases and the situ-
ations where a local magnetic field modulation is present in
the device. It is the point of this work to establish a set of
basic symmetry relations for spin transport in general two-
terminal spintronic systems.

We begin with the case of zero magnetic field. In this
case the time-reversal operator, T � �i�yK (K is the
complex conjugation), commutes with the system
Hamiltonian H defined in Eq. (1). The transformed state,
T , is thus an eigenstate of the same Hamiltonian. The
time-reversal operation changes���

n� to ����
n 
� , where 
� �

��. In the transformed state T �, the right-going and left-
going components for the same mode (n���) are ��b��n� 
��
and ��a��n� 
�� , respectively. The combination of these facts
and Eq. (4) results in
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Comparison of Eqs. (10) and (5) leads to

t0nL�L;nR�R � �L�RtnR 
�R;nL 
�L;

r0nR 
�R;n0R 
�0
R
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0
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Combined with the orthogonality and normalization con-
ditions of the S matrix, Eq. (11) indicates an important
conclusion: no spin polarization in the transmitted flux can
ever occur when the outgoing lead supports only one open
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channel. This conclusion does not depend on the detail of
the middle structure of the device and is valid for any two-
terminal ballistic transport. Note that this result was pre-
viously obtained only for more restrictive cases where both
the input and output leads were assumed to be within the
single-channel regime [8,13].

When the system has additional symmetries, more con-
straints will be imposed on the scattering matrix. When
both Vc�r� and ��r� are invariant under the reflection trans-
formation Rx (Ry) with respect to the x (y) axis, the system
has a symmetry related with the operator �xRx (�yRy). As
a result, the transformed state �xRx (�yRy ) is an eigen-
state of the Hamiltonian (1).

In the situation Vc�x; y� � Vc�x;�y� and ��x; y� �
��x;�y�, the transverse part of the propagating state
���
n� has a parity ��1�n�1 and the operation �yRy changes

���
n� to i���1�n�1���
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the same mode n��� are i 
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By comparing Eq. (12) with Eq. (4), we get
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which indicates
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However, Py can be finite in this situation.
For the case Vc�x; y� � Vc��x; y� and ��x; y� �

���x; y�, the propagating modes ���
n� can be chosen to

satisfy �R�
n� �x > 0� � �L�

n� ��x�. As a result, the operation
�xRx changes �L�

n� , a propagating mode in the left lead, to
�R�
n 
� , a propagating mode in the right lead, and vice versa.

In the eigenstate �xRx , the incident wave amplitudes for
the mode �L�
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which together with Eq. (4) results in

t0nL�L;nR�R � tnL 
�L;nR 
�R: (16)

In comparison with the results derived from the time-
reversal symmetry, one finds the following constraint rela-
tion of the scattering parameters, imposed by the symmetry
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T�xRx of the system:

tnL�L;nR�R � �L�RtnR�R;nL�L : (17)

All results obtained above are for the case of zero
magnetic field. In the following we focus on the general
case, i.e., both the SOI and the magnetic field may be finite.
The presence of a finite magnetic field breaks the time-
reversal symmetry. In fact, the system under the magnetic
field B is the time-reversal counterpart of that under �B.
The eigenstate of H�B� is transformed by T into that of
H��B�, with the same eigenenergy. From these facts one
can derive the following relation:

t0nL�L;nR�R��B� � �L�RtnR 
�R;nL 
�L�B�; (18)

which is a generalization of Eq. (11). For the case of two-
terminal transport the unitary condition of the S matrix
leads toX

nL�L;nR�R

jtnR�R;nL�L j
2 �

X
nL�L;nR�R

jt0nL�L;nR�R j
2: (19)

From Eqs. (18) and (19) one arrives at a general relation for
the total conductance

G��B� � G�B�: (20)

This is nothing but the Onsager-Casimir relation [22] and
holds for the magnetic field with arbitrary shape and
strength.

In most cases, the magnetic field involved in spin de-
vices is present along the perpendicular direction. For such
a magnetic field, one can show that under the operation �z,
the Hamiltonian H��� changes to H����. It follows that

tnR�R;nL�L���� � �L�RtnR�R;nL�L���: (21)

This implies that

G�2�1
���� � G�2�1

���; Px;y���� � �Px;y���;

Pz� � �� � Pz���: (22)

Further symmetric properties of the scattering matrix
and the transport quantities can be derived for the perpen-
dicular magnetic field distribution and device structure
with certain experimentally realizable symmetries. When
the magnetic field is homogeneous along the y direction,
i.e., B � Bz�x�ẑ, and the confining potential and the SOI
strength are invariant under the operation Ry, one can show
that H�B� changes to H��B� under the operation �yRy,
resulting in

tnR�R;nL�L��B� � �L�R��1�nL�nRtnR 
�R;nL 
�L�B�: (23)

This equation is a generalization of Eq. (13) and implies
that

G�R�L��B� � G 
�R 
�L�B�; Px;z��B� � �Px;z�B�;

Py��B� � Py�B�: (24)
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In addition, the conservation property of the system under
the transformation of �yRyT gives

t0nL�L;nR�R�B� � ��1�nL�nRtnR�R;nL�L�B�: (25)

Further, we consider two experimentally frequently em-
ployed situations in which the magnetic field profile is
either symmetric or antisymmetric, Bz��x� � �Bz�x�,
while the distribution of the SOI strength and confining
potential are symmetric, ���r� � ��r� and Vc��r� �
Vc�r�. For the case that the magnetic field is symmetric,
the system Hamiltonian is invariant under the operation
�xRxT. For this symmetry Eq. (17) holds, which implies

G"#�B; �� � G#"�B; ��: (26)

In the antisymmetric case the system is conserved under
the transformation �xRx. For this symmetry Eq. (16) holds,
which together with Eq. (25) results in

tnL 
�L;nR 
�R�B; �� � ��1�nL�nRtnR�R;nL�L�B; ��: (27)

This equation implies

G""�B; �� � G##�B; ��: (28)

We now discuss a simple interesting case in which � �
0 and the 2DEG waveguide is modulated only by an
antisymmetric magnetic field. In this case only spin-
conserved transmission may be nonzero, so that Px;y � 0.
In the limit of infinite width of the waveguide, it has been
shown [23] that the operator TRxRy is conserved, which
results in a vanishing spin polarization of the transmitted
electrons. For the case of a finite width, Eq. (28) indicates
that Pz � 0. Thus for the 2DEG waveguide modulated by
an antisymmetrical magnetic field, there is still not any
spin filtering effect in the presence of a uniform transverse
confinement.

It is worthwhile to note that when the Rashba term in
Eq. (1) is replaced by the Dresselhaus term [3]HD

SO � /

h �

��x�x � �y�y�, a set of relations corresponding to
Eqs. (10)–(28) can be established with the same procedure.

As we mentioned before, the derived symmetry relations
for the two-terminal spin-dependent electron transport sys-
tems can be used to check the accuracy of numerical
calculations. As an example, we notice that in a recent
study [24], a significant conductance variation upon
switching the magnetization direction of the FM stripe in
a spin device was predicted. The prediction is obviously
wrong from the view of symmetry. The mistake made in
the study can be traced to an incorrect treatment of the
spin-flipped transmission.

Conclusions.—In summary, we have studied spin trans-
port in a two-terminal quantum waveguide structure modu-
lated by the Rashba SOI and/or a magnetic field. A set of
basic symmetry relations have been derived for the spin-
dependent scattering parameters. The results lead to a few
24660
constraints, imposed by the device structure, on the spin
polarization of the transmitted electron beam from the
waveguide devices. A natural next step would be a general-
ization of these results to spin transport in multiterminal
multichannel systems along the line of Ref. [18].
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