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Phonons in Random Elastic Media and the Boson Peak
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We show that the density of states of random wave equations, normalized by the square of the
frequency, has a peak—sometimes narrow and sometimes broad—in the range of wave vectors between
the disorder correlation length and the interatomic spacing. We arrive at this conclusion by examining the
low and high-frequency asymptotics of the density of states. The results of this letter may be relevant for
understanding vibrational spectra and light propagation in disordered solids.
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FIG. 1. I�!� for the random elastic media in cases where the
high-frequency tail of the scaling function in (3) is convex (�2 >
0) or concave (�2 < 0).
One of the intriguing features of random elastic media—
observable in both Raman or neutron cross sections but
also in calorimetric measurements—is an anomalous ac-
cumulation of phonons at low frequencies [1]. This phe-
nomenon finds its most prominent manifestation in a peak
in the quantity I�!� � ��!�=!2, where ��!� is the pho-
non density of states (DOS) and ! is the frequency. In
recent years, many competing theories as to the origin of
this so-called boson peak have been formulated (for a
recent reference, see Ref. [2] and references therein). Of
these approaches a majority is based on model mechanisms
specific to the low temperature physics of amorphous
solids. Yet the boson peak is shown by both glassy and
random crystalline systems alike, an observation which has
ignited the search for an explanation which is not tied to the
specifics of a glassy environment.

On a basic level, the acoustic excitations of both amor-
phous materials and disordered crystals are described by
random wave equations. Existing analyses of such equa-
tions in the literature indeed predicted a disorder generated
excess DOS, [3]. However, these structures were observed
at high frequencies (wavelengths of the order of the inter-
atomic spacing), while the boson peak is a low energy
phenomenon. In this Letter we argue that the DOS of
elastic vibrations in disordered media is enhanced by dis-
order at low frequencies, with I�!� exhibiting either a peak
or a broad maximum (see Fig. 1 for a representative picture
of the DOS). Which of the two will be observed crucially
depends on the modeling of the randomness, i.e., the type
of disorder at work. Since the profile of the randomness of
‘‘real’’ systems is generally unknown, we are not in a
position to judge whether the present mechanism alone
may account for the spectral peaks observed in all experi-
ments. We believe, however, that it operates under quite
general conditions.

Let us begin by discussing some generic large scale
structures of the DOS of acoustic excitations. In a clean
system, the linear relation ! � �ck between frequency and
magnitude k of the wave vector gives rise to a DOS
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��!� �
Z ddk

�2��d
	�!� �ck� �

Ad
�2� �c�d

!d�1: (1)

Here, Ad is the area of the d-dimensional unit sphere and �c
the speed of sound (for our present analysis, the potential
existence of several acoustic phonon branches with differ-
ent sound velocities will not be of importance). Tied to the
linearizability of the dispersion relation, the relation ��
!d�1 applies only to frequencies !� !D much smaller
than the Debye frequency !D � �c

a (a: lattice spacing.) On
dimensional grounds, the generalization of (1) to higher
frequencies must be of the form

��!� �!d�1 ~f�!=!D�; (2)

where ~f�u� is some function with ~f�u� 1� ’ 1. It is clear
that ~f�u� falls off to zero at u� 1.

In contrast, in disordered materials we find strong devi-
ations from the above scaling form already for frequencies
!� !D. Indeed, our analysis of the random wave equa-
tion below will lead us to

��!� �
Ad

�2� �c�d
!d�1f

�
!l
�c

�
; !� !D; (3)

where the effective correlation length l� a of the disorder
is assumed to be much larger than the lattice spacing, and �c
is the typical speed of sound in random media to be defined
more precisely below. The scaling function f is given by
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where the form of the coefficients �1;2, � depends on the
space dimensionality and on a few basic characteristics of
the randomness. In the most interesting case, d � 3, we
find that �> 1 and �1 > 0. The sign of �2 lacks universal-
ity. �2 is negative if disorder in materials is mostly in the
random elastic constants, and it is positive if disorder is
mostly due to fluctuating mass density.

For �2 > 0, I�!� grows for !� �c=l and falls off at
!� �c=l (while still !� !D). This implies the existence
of a peak at !� �c=l. In contrast, for �2 < 0, I�!� in-
creases until ! becomes much larger than �c=l. Combined
with the expected dropoff of I�!� at ! * !D, this pro-
duces a broad maximum for I�!� between �c=l and !D.
Figure 1 shows a caricature of the two scenarios. We finally
note that if the disorder is relatively weak, rmsc < �c, (so
that the fluctuations of local speed of sound c are smaller
than the typical sound velocity) �1 � �2 � varc= �c2; for
more generally applicable expressions, see below.

We next turn to the derivation of these results. Consider
the wave equation

�
�	

!2

c2�x�

�
 �x� � 0; (5)

where the random velocity field c�x� fluctuates on spatial
scales �l. Interpreting the variable m�x� � 1=c2�x� as the
mass density of the random medium, we refer to Eq. (5) as
a ‘‘random mass’’ wave equation.

In the regime of small frequencies, !� �c=l, we are
facing a situation where the correlation length l is much
smaller than the ‘‘typical’’ wavelength k�1 � �c=! at
which the wave function  �x� fluctuates. The phonon field
effectively averages over many fluctuation intervals of the
disorder and, to a first approximation, Eq. (5) may be
replaced for its average over random c�x�: ��	!2

�c2
� �x��

0, where the typical speed of sound �c is defined as

�c � hc�x��2i�1=2 (6)

and the angular brackets denote averaging over random
c�x�. The very low-frequency asymptotics is then given by
Eq. (1) with �c taken from Eq. (6). (This result, as well as
the high-frequency asymptotics Eq. (10) discussed below,
are originally due to Chalker [4].)

To compute corrections to the low-frequency asymp-
totics of the DOS we rewrite Eq. (5) as

�
���

!2

�c2
h�x�

�
 �x� �

!2

�c2
 �x�; (7)

where the function h�x� � � �c=c�x��2 � 1 describes the
randomness. This representation suggests to interpret
!2= �c2 as the eigenvalue of the operator � weakly per-
24550
turbed by !2h�x�= �c2 (see Ref. [5] for discussions of per-
turbation theory applied to random wave equations). The
unperturbed problem is trivially diagonalized by a set of
plane waves  k�x� � 1

Ld=2
exp�ik 
 x�, with eigenvalues

!2= �c2 � k2 (L is the system size.) We next apply standard
perturbation theory to compute the eigenvalue shift caused
by the presence of the perturbation !2h= �c2. The vanishing
of hhi implies that, on average, there are no first order
corrections. To second order in h we find that the average
eigenvalue is given by !2

�c2
� k2 	 k4

R ddk0

�2��d
g�k0�

k2�k02
, where

g�k� is the Fourier transform of the disorder correlation
function of g�x� y� � hh�x�h�y�i. Irrespective of the dis-
tribution of the disorder, this function (a) drops off rapidly
for k > l�1 and (b) approaches a constant value �ldvar�h�
for k� l�1. This implies that for d > 2, the integral above
is dominated by momenta k0 � l�1. At the same time, the
reference momentum k�!= �c� l�1 is small. We thus
neglect the k dependence of the integrand and arrive at

!2

�c2
� k2 � k4

Z ddk0

�2��d
g�k0�

k02
: (8)

Physically, the correction to the zeroth order eigenvalue is
due to virtual scattering events wherein states with low-
lying momentum k�!= �c scatter off rapid fluctuations of
h into high-lying states k0 � l�1. Yet for small frequencies,
the large phase volume �l�d available to these scattering
processes cannot outweigh the overall multiplicative factor
!4. This mechanism pervades to higher orders in the
eigenvalue expansion and justifies the perturbative ap-
proach. In particular, Eq. (8) indeed describes the dominant
correction to the low-frequency dispersion relation.

We next substitute Eq. (8) into ��!� � 1
Ld
�k	�!�k� �

!� to obtain an expansion of the DOS as in Eqs. (3) and (4).
Specifically, the coefficient

�1 �
d	 2

2l2
Z ddk

�2��d
g�k�
k2

� var�h�> 0; (9)

where the proportionality to var�h� follows from the prop-
erties of the correlation function g discussed above.
Interestingly, positivity of �1 in Eq. (9) is a direct conse-
quence of the fact that the second order perturbation theory
always lowers the ground state energy.

For small velocity fluctuations, var�c� � �c2, we obtain
the estimate �1 � var�h� � var�c�= �c2 quoted above. We
finally note that these results hold only for d > 2. For d �
2, the integral in Eq. (9) is infrared divergent and the
approximation scheme employed here breaks down.

We next turn to the discussion of the high-frequency
case,!� �c=l. In this regime, the velocity field varies very
little over length scales comparable to the typical wave-
length. This implies that, locally, the solutions of (5)
behave like plane waves with the local dispersion relation
k�x� � !=c�x� and the local density of states given by
2-2
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��!;x� �
Ad

�2��dcd�x�
!d�1:

Averaging this result over the random velocity field we
obtain the global density of states

��!� �
Ad

�2��d

�
1

cd�x�

�
!d�1; !�

�c
l
:

We thus find that the coefficient �, introduced in Eq. (4), is
given by

� �
hc�d�x�i

hc�2�x�id=2
: (10)

As a consequence of the convexity of the power function,
�> 1 for d > 2.

To obtain corrections to the high-frequency asymptotics
(10), we need to compute distortions in the spectral density
caused by shallow (compared to the wavelength) variations
of the velocity field. It turns out that this task is most
efficiently tackled by analyzing the Green’s function

G � �

�
1

!2 r
2 	m�x� 	 i�

�
�1
; (11)

where m � c�2. From (11) the average DOS is obtained as

��!� �
2

�!
Imhm�x�G�x;x�i: (12)

What makes the operator (11) a good starting point for our
analysis is its structural similarity to a Schrödinger opera-
tor with ‘‘Planck’s constant’’ �h�!�1. This analogy will
enable us to apply semiclassical approximation schemes
familiar from quantum mechanics. We begin by applying
the Wigner transform

G�x; y� �
!d

�2��d
Z
ddkG�x;k�ei!k
�x�y�;

whereupon the ‘‘Schrödinger equation’’ assumes the form

��k� i!�1@x�2 �m�x� � i��G�x;k� � 1: (13)

To make use of the smallness, �!�1, of the derivative
operators, we expand G�x;k� in powers of !�1,

G�x;k� � G�0��x;k� 	
1

!
G�1��x;k� 	

1

!2G
�2��x;k�

	 
 
 
 ;

substitute the expansion into Eq. (13), and find
G�0�; G�1�; G�2�; . . . , recursively. By symmetry, G�1� van-
ishes upon configurational averaging so that the dominant
correction to the DOS is provided byG�2�. Substituting this
coefficient into Eq. (12), and comparing with Eq. (4) we
obtain the result

�2 �
�d� 2�2�4� d�

24

l2

�c2hc�di

�
rc 
 rc

cd

�
:
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Clearly, �2 > 0 if d � 3. If the fluctuations of c are weak,
�2 � varc= �c2 � �1.

We thus derive Eq. (4). The positivity of the two expan-
sion coefficients �1;2 implies that the scaling function f�u�
in Eq. (3) grows at u� 1 and falls off at u� 1. This
implies that the functional profile of the DOS contains a
peak somewhere at u � O�1�.

To conclude our analysis of the prototypical wave
Eq. (5), let us briefly discuss the case of space dimen-
sions d � 3. For d � 1, the high-frequency coefficient
�2 > 0, yet �< 1. Because of the instability in the low-
frequency expansion, the methods applied in this Letter
do not allow one to calculate �1 at d � 2. However,
for certain distributions of the disorder transfer matrix
methods may be applied to obtain an exact solution
[6]. These calculations show that f�u� is a globally de-
creasing function, and �1 < 0. For d � 2, the two domi-
nant high-frequency coefficients are structureless, � � 1
and �2 � 0, while the low-frequency expansion in Eq. (4)
will now involve terms proportional to log�u�. From these
results we cannot decide whether ��!�=! has a maximum
or a minimum between its low and high-frequency asymp-
totics. Finally, for d > 3, �1 > 0 and �> 1, although
�2 � 0, which implies that f�u� is a monotonously in-
creasing function. Summarizing, we see that the normal-
ized DOS of Eq. (5), ��!�=!d�1, exhibits a peak at
wavelengths of the order of disorder correlation length
only for d � 3.

Before proceeding, let us briefly compare our so
far results to earlier work. In most numerical simulations
of the problem (cf. e.g., Ref. [3] and references therein),
the disorder is chosen to be uncorrelated, that is, its corre-
lation length is of the order of the lattice spacing. For such
type of disorder, u ’ 1 translates to !�!D deep in the
bulk of the spectrum. At these frequencies it is hard to tell
whether deviations from the low-frequency asymptotics
��!� �!2 are caused by lattice effects [cf. Equation (2)]
or by disorder [Eq. (3)]. Qualitatively, however, the
numerical data is in agreement with the results of our
present analysis. Turning to earlier analytical work, we
notice that most approaches to random elastic problems
rely on the self-consistent Born approximation (SCBA).
(See Ref. [7] for a general review of the methods involved
and Refs. [8,9] for the applications of these methods to
random wave equations.) However, for a number of
reasons [10] this method lacks quantitative reliability
when used to calculate the DOS. (In contrast, the alter-
native techniques employed in this Letter are protected by
small expansion parameters and we expect them to produce
accurate results in the asymptotic regimes of high and low
frequencies.)

The wave Eq. (5) applies to the specific case where only
the mass density of the elastic medium fluctuates. The
continuum description of a more general environment
wherein the elastic constants also fluctuate reads as
2-3
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�r �x�r 	!2m�x�� �x� � 0: (14)

Here both  �x� and m�x� are random positive quantities.
It turns out that the direct perturbative expansion applied

above to Eq. (5) cannot be used to determine the coefficient
�1 of the problem Eq. (14). As an alternative, we apply a
generalized variant of the self-consistent Born approxima-
tion, wherein  �x� �  0 	 !2�x�, and !�x� is a Gaussian
distributed variable with zero mean. (In this way, positivity
of the elastic constant is ensured.) The actual implementa-
tion of the SCBA for this type of disorder turns out to be
rather involved and its details will be published elsewhere.
Suffice it to say that at d � 3, �1 is still positive. �2, on the
other hand, no longer has definite sign. It is straightforward
to generalize the high-frequency expansion outlined above
to the problem of random elastic constant  , Eq. (14).
Replacing the Laplacian in Eq. (11) by the operator r r
we find

�2 �
l2

�c2hm3=2 �3=2i

�
1

96

�
 2�rm�2

m3=2 5=2

�
	

5

48

�
m rmr 

m3=2 5=2

�

�
23

96

�
m2�r �2

m3=2 5=2

��
: (15)

If �2 is negative [which happens, for example, in the
limiting case of nonrandom m�x�] f�u� no longer has a
maximum at u ’ 1. Instead, I�!� is an increasing function
of ! with a broad maximum reached at frequencies !>
�c=l, before dropping off at frequencies higher than !D.
Concluding, we find that, depending on the profile of the
disorder, the envelope function I�!� of the random mass–
elastic constants problem either contains a low-frequency
peak, or a broad high-frequency maximum.

So far, we have considered the case of scalar phonons. In
a realistic environment, however,  ! ui will be a
d-component vector. The most general random vector
problem would be governed by a formidable rank four
random elastic modulus tensor. Assuming, however, a
medium consisting of a random accumulation of ‘‘micro-
crystallites’’ each of which possessing intrinsic rotational
invariance—this assumption may well be violated, espe-
cially in glassy environments, although it seems to work in
polycrystalline materials—the effective wave equation re-
duces to

@i�"�x�@juj� 	 @j� �x��@iuj 	 @jui�� 	!2m�x�ui � 0;

(16)

where m�x� is a random density of the medium and "�x�,
 �x� are random Lamé coefficients.

In the limit where only "�x� is random, Eq. (16) can be
mapped into Eq. (5) by substitution of  � @iui�"	 2 �.
In this case, both �1 and �2 are positive. This result carries
over to the case where, in addition to random "�x�, also the
density m�x� is made random; For these two types of
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disorder I�!� has a peak at !� �c=l. If, however, the shear
modulus  is also random, Eq. (16) becomes more similar
to Eq. (14). Applying the SCBA, it is still possible to show
that �1 > 0 (for d > 2). As with our previous discussion of
(14), however, �2 is no longer of definite sign. Specifically,
I�!� will contain a broad maximum (�2 < 0) if only the
shear modulus  �x� is random.

To conclude, we have shown that, depending on the type
of disorder, the normalized DOS I�!� of random wave
equations may either contain a peak at phonon wavelengths
of the order of the disorder correlation length, or a broad
maximum at wavelengths below the correlation length. We
believe that this work is not only relevant for the interpre-
tation of data on vibrational modes in random media but
also to the analysis of other types of waves, such as
electromagnetic waves in random environments.
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