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Weak Ergodicity Breaking in the Continuous-Time Random Walk
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The continuous-time random walk (CTRW) model exhibits a nonergodic phase when the average
waiting time diverges. Using an analytical approach for the nonbiased and the uniformly biased CTRWs,
and numerical simulations for the CTRW in a potential field, we obtain the nonergodic properties of the
random walk which show strong deviations from Boltzmann-Gibbs theory. We derive the distribution
function of occupation times in a bounded region of space which, in the ergodic phase recovers the
Boltzmann-Gibbs theory, while in the nonergodic phase yields a generalized nonergodic statistical law.
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The ergodic hypothesis is a cornerstone of statistical
mechanics. It states that ensemble averages and time aver-
ages are equal in the limit of infinite measurement time.
Starting with the work of Bouchaud, there has been grow-
ing interest in weak ergodicity breaking, which finds ap-
plications in a wide range of physical systems: pheno-
menological models of glasses [1], laser cooling [2,3],
blinking quantum dots [4,5], and models of atomic trans-
port in optical lattices [6]. Weak ergodicity breaking is
found for systems whose dynamics is characterized by
power law sojourn times, with infinite average waiting
times. In such systems the microscopical time scale di-
verges, for example, the average trapping time of an atom
in the theory of laser cooling [2,3]. The relation between
ergodicity breaking and diverging sojourn times can be
briefly explained by noting that one condition to obtain
ergodicity is that the measurement time is long, compared
with the characteristic time scale of the problem. However
this condition is never satisfied if the microscopical time
scale, i.e., the average trapping time, is infinite. It is
important to note that the concept of trapping time proba-
bility density function (PDF)  �t�, with a diverging first
moment, is widespread and found in many fields of physics
[2,7–10]. It was introduced into physics by Scher and
Montroll in the context of continuous-time random walk
(CTRW) [11]. This well known model [8–10] exhibits
anomalous subdiffusion hx2i / t� with �< 1, and aging
behaviors [12] which are related to ergodicity breaking.

Clearly if the CTRW is nonergodic, Boltzmann-Gibbs
statistics is not valid, in a way defined precisely later. The
goal of this Letter is to obtain a generalization of
Boltzmann-Gibbs statistical mechanics for CTRW models.
In addition to its theoretical importance, this goal is timely
due to recent observations on the single level of the CTRW
type of dynamics [13,14], for example, anomalous diffu-
sion of a single magnetic bead in a polymer network with a
well defined temperature T [14]. In single particle experi-
ments, the many particle averaging, i.e., the problem of
ensemble averaging, is removed [15]. Hence a fundamental
question is whether time averages of single particle trajec-
tories yield information identical to ensemble averages.
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The large number of applications of the CTRW model,
e.g., in the context of chaos theory [10], and related models
like the trap model and the comb model, make us believe
that constructing a general nonergodic theory for such
systems is worthy.

In this Letter we classify nonergodicity in terms of sta-
tistics of occupation times [16]. Consider a random walk
process, with some dynamical rules, on a one dimensional
lattice, with lattice points x � �L;�L� 1; . . . ; 0; . . .L.
The total time a particle occupies a lattice point x is
denoted with tx and is called the occupation time. The
fraction of occupation time is �px � tx=twhere t is the mea-
surement time. The investigation of nontrivial distributions
of occupation times has a long history in the mathematics
community (see [16] for references). More recently, it was
a topic for physical interest, for example, the distribution of
occupation times of random walks on random walks (the
Sinai model) was considered in [17], and in the context of
the persistence of the diffusion equation [18] (see also [16]
and references therein). The questions addressed in this
Letter are: what is the distribution of �px for CTRW mod-
els? And how is this distribution related to the equilibrium
of an ensemble of noninteracting random walkers, in par-
ticular, to Boltzmann-Gibbs statistics?

Model 1. —We consider a one dimensional unbiased
CTRW on a lattice. Let  �t� be the PDF of waiting times
at the sites. The particle starts at site x � 0; it will wait
there for a period t1 determined from  �t�, then jump with
a probability 1=2 to the left, and with probability 1=2 to the
right. After the jump, say to lattice point 1, the particle will
pause for a period t2, whose statistical properties are
determined by  �t�. It will then jump either back to point
x � 0 or to x � 2. Then the process is renewed. Reflecting
boundary conditions on 	L are used. We consider the
generic case [8–10], where

 �t� 

At��1���

j�����j
; (1)

when t!1 and 0<�<1, A>0. Specific values of � for a
wide range of physical systems and models are given in [7–
12,14]. In this case the average waiting time is infinite.
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To obtain the distribution of fraction of occupation time
we introduce a state function 
x�t� which is equal to 1 when
the particle is on x, otherwise it is zero. Thus 
x�t� follows
a two state process: jumping between the value 1 (called
state �) and zero (state �) and vice versa. The PDF of
times when the particle occupies state ���� is denoted
with  ��t�� ��t��, respectively. In the CTRW model
 ��t� �  �t�. To obtain  ��t�, note that after the particle
leaves lattice point x it is either on x� 1 or on x� 1. Let
tR�tL� be the random time it takes the particle starting on
x� 1�x� 1� to return to x, and fR�tR��fL�tL�� the corre-
sponding PDF of the first passage time, respectively. Then
the PDF of times in state � is  ��t� � �fR�t� � fL�t��=2.
To find the first passage time PDFs fR�t� and fL�t� we used
an important property of the CTRW [19]. Let SR�N� be the
probability of survival after N steps, in the presence of an
absorbing boundary on x, for a particle starting on x� 1
and a reflecting boundary on x � L. Let ~SR�z� �

1
N�0z

NSR�N� be the moment generating function for the
R random walk. Then the Laplace transform of fR�t� is [19]

f̂ R�u� �
1�  ̂�u�

u
~SR� ̂�u�� (2)

where  ̂�u� is the Laplace transform of  �t�. A similar
equation holds for left random walks, which yields f̂L�u�.
To calculate ~SR�z� we consider the discrete time random
walk, namely, a binomial random walk, using a transfer
matrix method (details left for future publication). We then
use Eq. (2) and the Tauberian theorem to find the long time
behavior of fR�t� and fL�t�, which in turn yield

 ��t� 

A�2L� 1�t��1���

j�����j
: (3)

From Eqs. (1) and (3) we see that the function 
x�t� follows
a two state process, jumping between state � and �, with
power law waiting times in both states. We apply now a
known limit theorem of Lamperti [20] and find that the
PDF of the fraction of times �px is

lim
t!1

f� �px� � ����2L� 1��1; �px�; (4)

where ���Rx; �px�

�
sin��
�

Rx �p��1
x �1� �px���1

Rx
2�1� �px�2�� �p2�

x �2Rx�1� �px�� �p�x cos��
:

(5)

Equations (4) and (5) show that for unbiased CTRWs Rx
equals 1=�2L� 1� and is independent of the position of the
observation point x, as expected from an unbiased random
walk. For Rx � 1 and � � 1=2 Eq. (5) is the familiar
arcsine PDF.

Now consider a large ensemble of noninteracting parti-
cles. The probability that a member of the ensemble will
occupy lattice point x, for reflecting boundary conditions,
in equilibrium is Peq

x � 1=�2L�. In an ergodic phase Peq
x �

�px in statistical sense, and in the limit of long measurement
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times. Indeed, as can be seen from Eq. (5) when �! 1 we
have f� �px� � �� �px � Peq

x �, namely ���1�:� is Dirac’s delta
function. Thus, when the average waiting time is finite we
get an ergodic behavior.

On the other hand Eq. (4) shows that when �< 1, we
have a nontrivial distribution of �px even in the long time
limit. We notice that we can rewrite our solution in a more
elegant form

lim
t!1

f� �px� � ��

�
Peq
x

1� Peq
x
; �px

�
: (6)

This equation will turn out to be rather general, and not
limited to the unbiased CTRW model. The importance of
the formula is that it relates the statistics of occupation
times with the equilibrium Peq

x of the system obtained from
an ensemble of particles.

Model 2.—We now consider the biased CTRW. This
well known model yields anomalous diffusion with a drift
[8,9,11]. Now the probability of jumping left (right) is 0<
q< 1 (1� q), respectively. The special case q � 1=2 is
the unbiased walk. Similar to the unbiased case, we calcu-
late the first passage time problem using the waiting time
PDF equation (1). We then prove that Eq. (6) is still valid;
however, now

Peq
x �

�1�qq �x

Z
; (7)

and on the boundaries Peq
L � �1� q���1� q�=q�L�1=Z

Peq
�L � q��1� q�=q��L�1=Z, and Z is the normalization

obtained from 
L
x��LP

eq
x � 1.

The biased and unbiased CTRW are used to model a
large number of physical processes. An important subclass
of CTRWs are thermal CTRWs, used to model systems
where the particle is in contact with a heat bath, e.g.,
[9,11,13,14,21]. For such cases, the equilibrium state for
an ensemble of particles is Boltzmann’s equilibrium. Then,
the standard condition of detailed balance is imposed on
the dynamics (see mathematical details below). In what
follows we assume that Boltzmann statistics is valid for
ensembles of particles.

The biased CTRW is used to model anomalous diffusion
under the influence of a constant external driving force F ,
e.g., [11]. The potential energy at each point x, excluding
the reflecting boundaries due to the interaction with the
external driving force is Vx � �Fax and a is the lattice
spacing. The well known condition of detailed balance
then relates the probability of making a jump left to the
temperature T:

q �
1

1� exp�FaT �
: (8)

Using Eqs. (7) and (8) we can rewrite the PDF of occupa-
tion fraction in an elegant form

f� �px� � ��

�
PBx

1� PBx
; �px

�
; (9)
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FIG. 1. Boltzmann’s equilibrium for an ensemble of CTRW
particles, in a harmonic potential field, and fixed temperature
T � 3. In simulations (cross) we use � � 0:3, 0.5, 0.8, the
results being indistinguishable. The figure illustrates that for
an ensemble of particles standard equilibrium is obtained.
Ergodicity breaking is found only when long time averages of
single particle trajectories are analyzed. The scaled potential (dot
dash curve) is the harmonic potential field, and the solid curve is
Boltzmann’s equilibrium distribution.
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FIG. 2. The PDF of occupation fraction �px � tx=t where tx is
the occupation time on lattice point x � 0. The random walk is
in a harmonic potential field, the point x � 0 being the minimum
of energy. For an ergodic process satisfying detailed balance, the
PDF f� �px� would be narrowly centered around the value pre-
dicted by Boltzmann which is given by the arrow. In a given
numerical experiment, it is unlikely to obtain the value of �px
predicted using Boltzmann-Gibbs ergodic theory. The solid
curve is the analytical formula Eq. (9) without fitting and with
� � 0:3 and T � 3.
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where PBx � exp��Fax=T�=Z, is the canonical Boltz-
mann probability. When the external force is zero we
have PBx �1=Z and Z�2L. Equation (9) is a generaliza-
tion of Boltzmann-Gibbs ergodic theory, for systems sat-
isfying a CTRW type of dynamics. For the case � � 1 we
recover the Boltzmann-Gibbs theory, since then �px � PBx .

Model 3. —We consider a CTRW in an external non-
linear potential field. We define a potential profile for the
system fV�L; V�L�1; . . .Vx; . . .g. The main goal is to check
if our main result, Eq. (6), is valid also for thermal random
walks in more complicated energy profiles than the linear
field. Then at each lattice point x the particle has a proba-
bility of jumping to the left QL�x� and a probability of
jumping right QR�x� � 1�QL�x�. These probabilities are
related to the potential field according to the detailed
balance condition

QL�x�
1�QL�x� 1�

� exp
�
�
Vx�1 � Vx

T

�
; (10)

implying that the equilibrium of an ensemble of particles is
the Boltzmann equilibrium. What is the distribution of the
fraction of occupation time in this case? We claim that
Eq. (6) is still valid however now

Peq
x � PBx �

exp�� Vx
T �

Z
(11)

is the Boltzmann equilibrium and Z is the partition func-
tion. Thus, a general relation between the partition function
of the problem, the basic tool of statistical physics, and the
distribution of occupation times characterizing the ergo-
dicity breaking is found. While we were able to prove this
relation for the biased and unbiased random walk, for the
more general case we use numerical simulations to check
our theory.

We use the example of a random walk in a harmonic
potential. The problem of anomalous diffusion in a har-
monic field was considered in the context of fractional
Fokker-Planck equations [21] and in single protein experi-
ments [13]. As a by-product, our work shows that frac-
tional Fokker-Planck equations [9] can be used to describe
the density of many particles and not time average quan-
tities, in this sense the fractional kinetic framework is very
different than the standard Fokker-Planck equations.

The potential field we choose is Vx � Kx2, with K � 1,
and T � 3. Equation (10) and the symmetry condition
QL�0� � 1=2 define the set of transition probabilities
fQL�x�g for the problem. In the simulations the particle
starts at the origin, it waits there for a random time deter-
mined by the normalized waiting time PDF  �t� �
�t��1��� for t > 1, it then jumps left or right according
to the probability lawsQL�x�, which in turn depends on the
external potential field and temperature via the detailed
balance condition. First in Fig. 1 we check that our simu-
lations yield Boltzmann equilibrium in the harmonic field
for an ensemble of particles. This means that we plot
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histograms of the position of many particles after a long
simulation time.

To investigate nonergodicity we then consider one tra-
jectory at a time. We obtain from the simulations, the total
time tx spent by a particle on the lattice point x � 0,
namely, at the minimum of the potential, and then con-
struct histograms of the occupation fraction �px � tx=t.

We consider the case � � 0:3 in Fig. 2 and show an
excellent agreement between our nonergodic theory
Eqs. (9) and (11) and numerical simulations. The figure
2-3
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FIG. 3. Same as Fig. 2, however, now � � 0:8. Instead of the
U shape found in Fig. 2 we find a distorted W shape of the PDF.
A peak close to Boltzmann’s value for �px, i.e., the arrow on PBx ,
is an indication that as � is increased the ergodic phase is
approached.
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exhibits aU shaped PDF. To understand this behavior, note
that for �� 1 we expect that the particle will get stuck on
one lattice point during a very long period, which is of the
order of the measurement time t. This trapping point can be
either the point of observation (e.g., x � 0 in our simula-
tions) or some other lattice point. In these cases we expect
to find �px ’ 1 or �px ’ 0, respectively. Hence the PDF of �px
has aU shape. This behavior exhibits large deviations from
ergodic behavior, in the sense that we have a very small
probability for finding the occupation fraction close to the
value predicted by Boltzmann’s ergodic theory (the arrow).

When we increase � we anticipate a ‘‘more ergodic’’
behavior, in particular, in the limit �! 1. An ergodic
behavior means that the occupation fraction �px is equal
to Boltzmann’s probability (i.e., the arrows in the figures).
In Fig. 3 we set � � 0:8 and observe a peak in the PDF of
�px centered in the vicinity of the ensemble average value.
Note, however, that the PDF f� �px� still attains its maxi-
mum on �px � 0 and �px � 1.

Why does the PDF of the occupation fraction Eq. (6)
have such a general validity, at least within CTRW models?
According to the limit theorem Eq. (5), the PDF of an
occupation fraction depends on two parameters, � and Rx.
As mentioned, the nonuniversal exponent � is the anoma-
lous diffusion exponent in the relation hx2i / t�, obtained
in previous works, for different types of models [8,9]. The
parameter Rx, seems difficult to obtain from microscopi-
cal models, and first principles. To solve this difficulty, we
notice that using Eq. (5), we find the ensemble average

h �pxi �
Z 1

0
�px���Rx; �px�d �px �

Rx

1�Rx
: (12)

On the other hand, the ensemble average must be equal
also to h �pxi � Peq

x . Hence, Rx � Peq
x =�1� Peq

x � as we
indeed found in all the three CTRW models we investi-
gated. In particular when detailed balance conditions hold
Peq
x � PBx . This very general argument might mean that the

nonergodic distribution of the occupation fraction, and its
relation to Boltzmann-Gibbs statistical mechanics, is more
24060
general than the domain of CTRW type of models under
investigation in this Letter.

To summarize, Eq. (6) yields the nonergodic statistical
mechanical theory of the CTRW, both for thermal and non-
thermal models. For thermal CTRWs, our theory gives the
distribution of �px, while the ergodic Boltzmann-Gibbs
theory states �px � PBx . The mathematical foundation of the
theory is the limit theorem (5) related to the arcsine law.
The physical input is the anomalous diffusion exponent �.
A connection between the nonergodic dynamics and the
partition function was found, which enables us to find
nontrivial ergodicity breaking properties of the underlying
random walk, in particular, the random walk in a potential
field.
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