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Collapse of Solutions of the Nonlinear Schrödinger Equation with a Time-Dependent
Nonlinearity: Application to Bose-Einstein Condensates
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It is proven that periodically varying and sign definite nonlinearity in a general case does not prevent
collapse in two-dimensional and three-dimensional nonlinear Schrödinger equations: at any oscillation
frequency of the nonlinearity blowing up solutions exist. Contrary to the results known for a sign-
alternating nonlinearity, an increase of the frequency of oscillations accelerates collapse. The effect is
discussed from the viewpoint of scaling arguments. For the three-dimensional case a sufficient condition
for the existence of collapse is rigorously established. The results are discussed in the context of the mean
field theory of Bose-Einstein condensates with time-dependent scattering length.
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The creation of stable multidimensional solitons is a
general physical problem which during the last few years
acquired especial importance in the mean field theory of
Bose-Einstein condensates (BECs) and in the nonlinear
optics [1]. Stimulated by achievements in experimental
management of BECs by means of Feshbach resonance,
considerable attention has recently been paid to possibil-
ities of stabilization of condensates by using a time-
dependent scattering length [2–5]. By analogy with the
Kapitza pendulum [6], which acquires an additional dy-
namically stable point when the pivot is rapidly oscillating,
it has been suggested [2,3] that sign-alternating nonlinear-
ity, varying rapidly enough, can stabilize a quasi-two-
dimensional (2D) condensate. According to Ref. [2] stabi-
lization can be achieved even when a scattering length is
negative definite.

Previous studies were based either on qualitative argu-
ments, like variational approach [2,3,5] using the Gaussian
ansatz and more accurate moment method [4], or on direct
numerical simulations of a multidimensional nonlinear
Schrödinger (NLS) equation. While most of the papers
report similar results about the critical collapse, approxi-
mate character of the exploited approaches results in dis-
crepancies in conclusions about 3D collapse. In particular,
for the negative mean scattering length the authors of
Ref. [2] were not able to arrest the collapse, while stable
solutions were reported in Ref. [5].

Thus, the present situation of the theory clearly demon-
strates lack of exact results. It turns out that rigorous
statements, which constitute the main goal of the present
Letter, are available in a case of a sign definite scattering
length [7]. Being subject to a number of constraints our
results do not solve the problem completely, but allow one
to understand the effect of the scattering length modulation
on the solutions of the 2D and 3D NLS equations. In
particular, we prove that variation of negative definite
scattering length with any frequency generally speaking
does not arrest collapse, i.e., one can always choose an
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initial condition blowing up at finite time. Qualitatively, the
above statement can be conjectured on the basis of earlier
results. Indeed, as it has been proven in [8], dissipation
cannot arrest the overcritical collapse, but only changes the
sufficient condition of its existence. Meanwhile it is known
that the varying nonlinearity in the NLS equation can be
transformed into a time-dependent dissipative term (see,
e.g., [9]). Thus one can expect that, in a general situation,
time-dependent nonlinearity, even rapidly varying, will not
arrest collapse, but only changes conditions for this phe-
nomenon. In this Letter, we formulate sufficient conditions
for the collapse in the case of the negative definite scatter-
ing length and find that in the 3D case oscillations of the
nonlinearity are favorable for the collapse, in the sense that
increase of the frequency of oscillations leads to decrease
of the upper bound for time of collapse.

In the case of a BEC the problem is described by the
Gross-Pitaevskii (GP) equation [10], which in the absence
of the external trap potential is also known as the NLS
equation, for which the problem of collapse was inten-
sively studied for a long time [11]. Taking into account
that the parabolic trap potential does not affect the exis-
tence of collapse in the case of a constant scattering length
[12], we restrict our considerations to the NLS equation.
Such a statement provides generality of the results, as the
NLS equation is the well known model for numerous
physical phenomena. In particular, the results described
below for the critical case are directly applicable to the
problem of beam focusing in a stratified Kerr medium.

Statement of the problem and scaling arguments.—Let
us consider the dimensionless NLS equation

i
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� �r2 ! � g�!t�j !j
2 !; (1)

where  ! �  !�x; t� and x 2 RD with D � 2, 3 being the
spatial dimension. The nonlinearity coefficient is consid-
ered to be varying with a period T � 2�=!, i.e., g�t� �
g�t	 2�� and to be bounded and positive definite:
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g2 > g�t�> g1 > 0 for all t. It will be convenient to in-
troduce the notation ’�x; t� �  1�x; t� for the solution of
Eq. (1) with ! � 1 which in this way does not contain any
free parameters. Thus,  !�x; t� �

����
!

p
’�!t;

����
!

p
x� is a so-

lution of (1) for a given!, whenever ’�t; x� solves (1) with
! � 1.

The energy

E!�t� �
Z �

jr !j
2 �

1

2
g�!t�j !j

4

�
dx; (2)

and the number of particles N! �
R
j !j

2dx plays a spe-
cial role in the analysis of the blow up phenomenon (if not
specified, hereafter the integrals are taken over RD) [11].
One easily verifies the following relations

N! � !�2�D�=2N1; E!�t� � !�4�D�=2E1�!t�: (3)

The last equation, as well as the link between the solutions
’ and  !, mean that the existence of a blowing up solution
of Eq. (1) with ! � 1 and negative energy implies the
existence of a blowing up solution of Eq. (1) at any
oscillation frequency of the nonlinear term. If that happens
in the critical case (D � 2) the collapse occurs with the
same number of atoms, while in the 3D case the number of
particles required for the collapse decays as 1=

����
!

p
as the

frequency goes to infinity.
When the nonlinear term is a positive constant (i.e.,

when g�t� � const> 0), the solution of (1) blows up at a
finite time, provided the energy is negative [11]. Below we
will show that this also happens in the case of varying
nonlinearity, where energy will be required to be negative
at the initial moment of time. As in Eq. (3) the link between
initial energies of the solutions  ! and ’ is given by
E!�0� � !�4�D�=2E0 (hereafter we simplify the notation
introducing E0 � E!�0�) which means that by increasing
the frequency one increases the modulus of the energy of
the blowing up solution  !�x; t� proportionally to ! and����
!

p
in the 2D and 3D cases, respectively.

In the case at hand, however, the energy (2) is not a
constant any more but is governed by the equation

dE!
dt

� �
1

2

dg
dt

Z
j !j

4dx: (4)

The energy grows during half periods with dg=dt < 0, and
thus in principle may acquire positive values, even being
initially negative. Thus the rigorous results of the NLS
collapse cannot be applied straightforwardly. They can
however be modified to provide sufficient condition for
the collapse of solutions of Eq. (1), which we will discuss
in the next two paragraphs.

‘‘Early-time’’ collapse.—Let us start with the most sim-
ple, but allowing rather general considerations, situation
where g�!t� is growing during the first half period. Then,
E!�t�< 0 for the interval t 2 �0; T=2� (provided the solu-
tion exists) and to get a sufficient condition for the collapse
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it is enough to require that it happens during the first half
period (we call it ‘‘early-time’’ collapse).

This can be done by a slight modification of the standard
arguments [11]. To this end we introduce the quantities
Y�t� �

R
jxj2j !j2dx, and Z�t� � Im

R
x  r � ! !dx,

which solve the equations:

dY�t�
dt

� �4Z�t�; (5)

dZ�t�
dt

� �DE!�t� 	 �D� 2�
Z

jr !j
2dx: (6)

From (5) and (6) it follows that, if dg=dt > 0, E0 < 0, and
Z0 � 0 [hereafter Y�0� � Y0, Z�0� � Z0] one can obtain
the estimate Y�t� � 2DE0t

2 � 4Z0t	 Y0, from which it
follows that the blow up occurs at a finite time T� � T0 <

1, where T0 �
Z0

DE0
	

�����������������������
Z2
0

D2E2
0
� Y0

2DE0

r
. Imposing now the

condition T0 � T=2 we obtain a requirement for Y0:

Y0 � Y� � DjE0jT2=2	 2Z0T: (7)

This condition and the requirements E0 < 0 and Z0 � 0
constitute the sufficient conditions for the collapse to hap-
pen during the first half period.

The obtained result has transparent physical meaning.
Indeed, compared to the standard, time independent prob-
lem, a new condition (7) appeared. Since Y�t� is a mean
squared width of the wave packet, the new condition
requires the initial wave-packet to be localized sufficiently
well to decrease the blowing up time, making it less than
the first half period.

Combining the above result with the scaling arguments
of the preceding paragraph, one concludes that for any
oscillation frequency of the nonlinearity with initially
positive derivative, one can find an initial condition for
collapse at finite time, in both 2D and 3D cases.

Sufficient conditions for the collapse in the 3D case.—
Condition (7) looses its practical sense in the case of
rapidly varying nonlinearity, i.e., when T ! 0. Then, in
physically relevant situations, collapse cannot occur during
the first half period and one has to consider a more general
situation which will be restricted to the 3D case. Since the
sign of the energy is of primary importance and assuming
that initially the energy is negative, E0 < 0, in order to
establish a sufficient condition for the collapse we have to
control the change of the energy E!�t� in time. We will do
that using the ideas due to Tsutsumi [8].

Taking into account that g�!t� is a periodic function
with a period T, we consider an interval t 2 �Tn�1; Tn�,
where Tn � nT with n being an integer, and assume that
the solution exists in this interval (more precisely in the
interval t 2 �0; Tn�). As we have shown in the preceding
paragraph, the way how the nonlinearity is changing during
the first half period is relevant for the early-time collapse.
Now we relax this constrain, and choose the most ‘‘unfav-
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orable’’ for collapse (because of initial grows of the en-
ergy) situation, where dg=dt is time definite on each of the
half periods, with dg=dt < 0 for t 2 �Tn�1; Tn � T=2� and
dg=dt > 0 for t 2 �Tn � T=2; Tn�.

Next we define two functionals

E �t� �
Z �

jr !j
2 �

3

4
g�t�j !j

4

�
dx; (8)

~E�t� �
Z �

jr !j2 �
1

2

�
g�t� �

1

�
dg
dt

�
j !j4

�
dx: (9)

Integrating by parts e��tE!�t� with respect to time and
using (4) we obtain for t > t1 and for some positive con-
stant � � 0 the following relation

e��tE!�t� � e��t1E!�t1� � �
Z t

t1
e��s~E�s�ds: (10)

Let now t > t1 and t, t1 2 �Tn�1; Tn � T=2�. Then one
has ~E�t1� � E�t1� and Eq. (10) allows us to obtain

d
dt

Z t

t1
e��t�s�~E�s�ds � e��t�t1�E�t1�:

The last formula implies

Z t

t1
e��s~E�s�ds � 0 if E�t1�< 0: (11)

We have assumed that initially the energy is negative,
i.e., E0 < 0. Then, using the continuity arguments, which
take into account that (11) is valid for all t and t1 from the
interval �Tn�1; Tn � T=2�, we obtain that in the first half
period ~E�t�< 0. Next we observe that E!�T=2� �
~E�T=2�< 0 and that E!�t� is a decreasing function in the
second half period. Hence E!�T�< 0. Noting that ~E�Tn� �
E!�Tn� and ~E�Tn � T=2� � E!�Tn � T=2� for all n for
which the solution exists and applying the previous argu-
ments for the first n periods, we deduce that the initial
condition E0 < 0 guarantees that E!�Tn�< 0. In other
words, periodically varying nonlinearity with definite
sign cannot result in a change of the sign of an initially
negative energy.

For the next consideration we recall (5) and (6), rewrit-
ing the last expression for the 3D case as follows: dZ=dt �
�2E�t� � �2Ê�t� where Ê�t� is a continuous function
defined by Ê�t� � ~E�t� when t 2 �Tn�1; Tn � T=2� and
Ê�t� � E0 when t 2 �Tn � T=2; Tn�. Then the following
estimate for Y�t� holds

Y�t� � Y0 	 4
Z t

0
ds
�
�Z0 	 2

Z s

0
Ê���d�

�
: (12)

Let us define � � ��t� through the relation t � nT 	 �,
where n is chosen to be the largest integer assuring that
nT � t and thus 0 � � < 1. Then, the first integral in (11)
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is trivially computed, while for the second one we obtainZ t

0

Z s

0
Ê���d�ds �

Z nT

0
�nT � s�Ê�s�ds	 jE0jT

� E0T2

�
n2

4
�

5n
8

�
	 jE0jT:

The last formula and Eq. (12) allow us to obtain the
estimate as follows

Y�t� � 2E0T
2n2 � �5E0T

2 	 4Z0T�n	 Y0 	 jE0jT:

(13)

From this inequality we can find the number n� determin-
ing the latest period during which blow up occurs (at that
number the right hand side of the inequality becomes
negative). In this way we obtain that the blow up occurs
at t < T�, where

T� �
5

4
T 	

Z0

E0
	

���������������������������������������������������������������������
25

16
T2 	

�
5Z0

2E0
	

1

2

�
T 	

Z2
0

E2
0

�
Y0
2E0

s
:

(14)

Thus we have outlined the proof of the following.
Theorem.—Let  ! be a sufficiently smooth solution of

(1) in the 3D case, the initial condition for which is
characterized by E0 < 0 and Z0 � 0; then blow up occurs
at a finite time t < T�, where T� is given by (14).

It is worth emphasizing that although we considered a
situation where a change of the scattering length is initial-
ized with the ‘‘negative’’ half period of dg=dt, the above
estimates obviously applies for any initial value of dg=dt.

Estimates for real condensates.—Let us now discuss the
qualitative picture emerging from the obtained results in
the 3D case. We notice that the temporal characteristics of
the collapse are relevant to the theory of a BEC due to
experimental constraints on the frequency of the oscillation
of the nonlinearity, emerging from the fact that change of
interatomic interactions in practice is achieved by means of
the Feshbach resonance, controlled by varying external
magnetic field. The same physical phenomenon can result
in creation of molecules from pairing atoms, in originating
excited atomic states, etc. The respective processes are not
described by the mean field GP equation (the NLS equa-
tion), which restricts the range of meaningful frequencies.
On the other hand, relevant frequencies are bounded from
below by characteristic times of the condensate’s life.

Although the sufficient condition gives only an upper
bound for the time of the collapse, we will treat the
quantities T0 and T� as the collapse times (conjecturing
that in a general situation decrease/increase of each of
these quantities results in decrease/increase of the time of
the collapse). The first observation is that T0 < T�. Second,
the upper bound for collapse T� decreases as the frequency
of oscillation grows. This is in sharp contrast to what is
predicted in the 2D case with the sign-alternating scatter-
ing length [2–4]. Third, the collapse time strongly depends
5-3



FIG. 1. Upper bound for the collapse time vs frequency for
different numbers of atoms. The frequency !0, defined in the
text for each of the curves is 4.3492 Hz (solid line), 13.0428 Hz
(dashed line), and 17.9253 Hz (dotted line).
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not only on the number of atoms but on the aspect of the
initial distribution.

To connect our results with realistic experiments we
provide the estimates using the data from Ref. [13], where
observation of the collapse of a BEC controlled by
Feshbach resonance (with monotonically changed mag-
netic field) was reported. We consider a cloud of condensed
85Rb atoms initially having a Gaussian distribution nor-
malized to the number of particles N and characterized by
the radius r (in dimensionless variables):  �x; 0� �
N1=2

r3=2�3=4 exp��
x2

2r2�, which gives Z0 � 0, Y0 � 3Nr2=2, and

E0 �
3N
2r2

� N2

25=2�3=2r3
. For the energy to be negative in the

described situation, one must have N >Ncr � 21=26�3=2r.
Change of the scattering length is modeled by the for-

mula as�t� � a0s�1�
�

B�t��B0
�, where [14] a0s � �20:1 nm,

the position of the resonance peak is B0 � 154:9 G, and
the width of the resonance is � � 11 G. We consider the
initial magnetic field B�0� � 166 G, which corresponds to
the initial scattering length as�0� � �0:18 nm, and the
amplitude of the field oscillations 10 G (which for the
frequency 1000 Hz corresponds to the speed 6:37 G=ms
of the change of the magnetic field). Considering the initial
radius of spherically symmetric cloud to be 16:5  m
(which corresponds to r � 1 in the dimensionless units)
one obtains that the link between N and the real number of
particles N is given by N � �N=7� � 104 (the unit of the
dimensionless time corresponds to 0.116 s), and thus N
should exceed N cr � 67498. In the case at hand the
‘‘early collapse’’ happens at (physical) times bounded by
t0 � 13:77=

������������������������
N �N cr

p
s for the frequencies !2 <!2

0 �
0:756� 10�2�N �N cr� Hz. If frequency increases, or
the scattering length initially decreases, collapse occurs at
later times, bounded by T�. Although the respective ana-
lytical expression for T� is readily obtained, it appears to be
more informative to present dependence of the upper
bound of the collapse time vs the frequency of the scatter-
ing length graphically (see Fig. 1).

Conclusion.—It has been established that nonlinearity
periodic in time but sign definite does not prevent collapse
in two-dimensional and three-dimensional condensates
with a negative mean scattering length. A sufficient con-
dition for the collapse has been formulated which implies
the possibility to create initial configurations of a conden-
sate which will blow up in a finite time.

The sufficient condition of the 3D collapse is not the
optimal estimate for the time of the collapse. This is not
only due to the fact that in the course of the proof some
estimates were shortened (and lower precision was the
price), but mainly because the proof does not involve a
specific law of periodic variation of the nonlinearity. The
respective improvement of the estimate, as well as its
generalization to the critical case (considered here only
for the case of early collapse), are left as open questions. In
the meantime, the above results can be directly generalized
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to the NLS equations with higher nonlinearity and the
periodically varying dissipative term.
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