
PRL 94, 240404 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
24 JUNE 2005
Exact Coherent States of a Harmonically Confined Tonks-Girardeau Gas
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Using a scaling transformation we exactly determine the dynamics of an harmonically confined Tonks-
Girardeau gas under arbitrary time variations of the trap frequency. We show how during a one-
dimensional expansion a ‘‘dynamical fermionization’’ occurs as the momentum distribution rapidly
approaches an ideal Fermi gas distribution, and that under a sudden change of the trap frequency the
gas undergoes undamped breathing oscillations displaying alternating bosonic and fermionic character in
momentum space. The absence of damping in the oscillations is a peculiarity of the truly Tonks regime.
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One of the most challenging and interesting problems in
quantum dynamics involves understanding a temporal be-
havior of strongly correlated many-body systems beyond
the linear-response regime or the adiabatic approximation.
Aside from fundamental interest, this issue is of primary
importance for current experiments with ultracold atomic
gases and their potential applications to quantum informa-
tion, where control and manipulation of entangled states of
many-particle quantum systems is required.

The one-dimensional (1D) gas of impenetrable bosons
(Tonks-Girardeau gas) corresponds to the limit of infinitely
strong repulsive interactions in the Lieb-Liniger (LL)
model of 1D bosons interacting through a contact pair
potential [1]. It was shown in Ref. [2] that the Tonks-
Girardeau limit is applicable for describing the low-density
regime of bosonic atomic gases in a quasi-1D geometry.
The physical properties of 1D bosons in this limit can be
investigated in detail since their wave function is known
explicitly in terms of the one of a noninteracting fermions
in the same external potential [3]. In fact, the density
profile, the thermodynamic properties, the collective exci-
tation spectrum, and the density correlation functions co-
incide with those of an ideal Fermi gas, leading to
interesting manifestations of fermionization of a Bose
gas, such as broadening of the density profiles [4], an
increase of the frequency of collective excitations [5] and
a dramatic reduction of the three-body recombination rate
[6]. However the one-body density matrix, and conse-
quently the momentum distribution, differs considerably
from that of a Fermi gas, due to the phase correlations
stemming from the bosonic statistics of the Tonks gas. For
the homogeneous case the momentum distribution n�p� at
the origin has a 1=

����
p

p
peak [7] and for a harmonically

trapped gas the population of the lowest single-particle
state scales as

����
N

p
with N being the particle number

[8,9]; this shows that due to the strong interactions the
bosons do not form a Bose-Einstein condensate. In both
cases at large momenta p > �hn, with n being the density at
the center, the momentum distribution shows characteristic
slowly decaying tails n�p� � p�4 [10].
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Experiments on cold atomic gases under optical con-
finement in a quasi-1D geometry are now starting to ex-
plore the strongly interacting regime, demonstrated by the
examination of its correlation properties [11] and of the
frequency of collective modes [12]. More recently there
has been significant progress towards the Tonks limit, in
which the momentum distribution [13] and the thermody-
namical properties [14] have been measured. Experiments
addressing the dynamics of the Tonks gas seem also in
view. Some aspects of the dynamical evolution of a Tonks
gas have already been theoretically studied. These include
the formation of solitons in a ring geometry [15], the
splitting and recombination of a Tonks beam across an
obstacle [16] and 1D expansion [17]. In the last case, using
numerical calculations on a lattice, the momentum distri-
bution was found to approach that of an ideal Fermi gas
[18].

The aim of this work is to study the dynamical evolution
of a harmonically trapped Tonks gas induced by arbitrary
time variations of the trap frequency. We show that this
evolution can be described exactly using time-dependent
coherent states (see, e.g., [19]), in close analogy of the
dynamics of Bose-Einstein condensates [20]. These have
been investigated also for the case of a strongly correlated
Bose gas interacting with an inverse-square pair potential
[21]. Here we explore, in particular, how the bosonic or
fermionic properties of the Tonks gas manifest themselves
in the dynamics of the coherence. For this purpose we
choose the momentum distribution as the observable. We
first determine explicitly its time evolution in terms of the
initial-time configuration with the aid of a scaling trans-
formation. We then use this result to study two important
examples: (i) the 1D expansion of the gas, where we
explain why the gas develops a Fermi shape of the mo-
mentum distribution, and (ii) the large-amplitude breathing
modes, where we find the absence of damping and a rich
dynamical evolution in momentum space, displaying alter-
nating bosonic and fermionic character.

Scaling transformation.—We consider N impenetrable
bosons with mass m in a 1D geometry at zero temperature
and subjected to a harmonic potential
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Vext�x; t� � m!2�t�x2=2 (1)

with !�t� arbitrary time-dependent trapping frequency and
!�t � 0� � !0. We proceed to derive an exact analytic
expression for the evolution of the Tonks gas wave func-
tion, the one-body density matrix, and the momentum
distribution at all times. We start by employing the time-
dependent Bose-Fermi mapping [15], which allows us to
write the many-body wave function 	T�x1; x2; . . . ; xN; t�
for the Tonks gas in terms of the wave function
	F�x1; x2; . . . ; xN; t� � �1=

������
N!

p
� detNj;k�1�j�xk; t� of a non-

interacting Fermi gas experiencing the same external po-
tential. The single-particle orbitals�j�x; t� satisfy the time-
dependent Schrödinger equation

i�h
@
@t
�j�x;t���

�h2

2m
@2

@x2
�j�x;t��Vext�x;t��j�x;t�: (2)

The Tonks gas wave function is then constructed by apply-
ing to 	F the unit antisymmetric function
A�x1; . . . ; xN� � �1�j<k�Nsgn�xj � xk�,

	T�x1; . . . ; xN; t� � A�x1; . . . ; xN�	F�x1; . . . ; xN; t�; (3)

and is thus properly symmetrized.
For the case of a time-dependent potential (1) the in-

troduction of a scaling transformation for both the space
and time coordinates provides an exact solution for Eq. (2),
which reads [19,20]

�j�x; t� �
1���
b

p �j

�
x
b
; 0
�
exp

�
i
mx2

2 �h

_b
b
� iEj��t�

�
: (4)

In Eq. (4) above the scaling factor b�t� obeys the second-
order differential equation

�b�!2�t�b � !2
0=b

3 (5)

with initial conditions b�0� � 1 and _b�0� � 0, the rescaled
time parameter is determined by ��t� �

R
t
0 dt

0=b2�t0�, and
�j�x; 0� are the well-known wave functions of the 1D
harmonic oscillator with frequency !0 and eigenvalue Ej
expressed in terms of the Hermite polynomials. We remark
that Eq. (4) is the unique time-dependent solution of the
linear Schrödinger equation (2).

Substituting the one-particle states (4) into Eq. (3) leads
to the final result for the time evolution of the Tonks gas
wave function in terms of its initial-time expression

	T�x1; . . . ; xN; t� � b�N=2	T�x1=b; . . . ; xN=b; 0�


 exp
�
i _b
b!0

X
j

x2j
2l20

�
exp

�
�i

X
j

Ej�
�
;

(6)

with l0 �
����������������
�h=m!0

p
. Here we used that (i) the scaling (4)

takes place irrespective of the one-particle quantum num-
ber, and (ii) the unit antisymmetric operator A is invariant
under the scaling transformation.
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Equation (6) allows an immediate derivation of an ana-
lytic expression for the one-body density matrix, given by
its first-quantized expression g1�x; y; t� �
N
R
dx2; . . . ; dxN	��x; x2; . . . ; xN; t�	�y; x2; . . . ; xN; t�, in

the scaling form

g1�x; y; t� �
1

b
g1

�
x
b
;
y
b
; 0
�
exp

�
�
i
b

_b
!0

x2 � y2

2l20

�
: (7)

This result shows first of all that during the generic time
evolution described by Eq. (1) the absolute value of the
one-body density matrix preserves its power-law behavior
at large distances [9,22]. For the case of an expansion this
was noticed in Ref. [18] from numerical simulations on a
lattice. Secondly, Eq. (7) yields the exact evolution of the
Tonks gas density profile ��x; t� � g1�x; x; t� �
��x=b; 0�=b, thus generalizing the result of Ref. [17] for
any time evolution of the trap frequency. We remark that
Eq. (7) also holds at any finite temperature, as follows from
the statistical Bose-Fermi mapping theorem [23].

The dynamical phase in Eq. (7) enters the expression for
the time evolution of the momentum distribution n�p; t� �R
dxdyeip�x�y�= �hg1�x; y; t�, which upon change of integra-

tion variables x=b, y=b! x; y reads

n�p; t� � b
Z
dxdyg1�x; y; 0�


 exp
�
�ib

� _b
!0

x2 � y2

2l20
�
p�x� y�

�h

��
: (8)

Below we describe two cases where the dynamical phase
acquired by the one-body density matrix strongly influen-
ces the time behavior of the momentum distribution.

Expansion.—A 1D expansion could be achieved in an
experiment by turning off only the longitudinal confine-
ment. To describe this case we set !�t � 0� � !0 and
!�t� � 0 for t > 0, and the solution of Eq. (5) for the

scaling parameter b�t� is given by b�t� �
�������������������
1�!2

0t
2

q
. As

this parameter becomes increasingly large with time, we
are able to determine analytically the behavior of the
momentum distribution (8) for long times by the method
of stationary phase. The points for which the phase is
stationary are given by x� � y� � !0pl20=� _b �h�, and hence
we find that the momentum distribution is asymptotically
determined solely by the diagonal part of the equilibrium
one-body density matrix, i.e., the particle density profile
��x; 0� which is identical to the one of an ideal Fermi gas.
For the case of harmonic confinement the latter is propor-
tional to the equilibrium momentum distribution nF�p� of
the ideal Fermi gas [24] thus allowing one to write the final
expression for the Tonks gas momentum distribution as

n�p; t� � j!0= _bjnF�!0p= _b�: (9)

This result can be also understood as follows. Since the
initial momentum distribution of the atoms is very narrow,
4-2
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FIG. 1 (color online). Momentum distribution of an expanding
Tonks gas with N � 7 at different times (in units of 1=!0) as
indicated on the panels, from numerical solution (solid lines),
asymptotic fermionic limit (dotted lines) and Thomas-Fermi
approximation (dashed lines). The units are indicated on the
axis labels.
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the final momentum distribution is determined by the
hydrodynamic velocity field acquired during expansion.
Such a velocity field is obtained from the dynamical phase
in the Eq. (7) and is linear in the position. Hence its
distribution has the same shape as the particle density
profile of a Fermi gas. For N � 1 Eq. (9) is well described
by the Thomas-Fermi approximation, which neglects the
quantum shell oscillations of order 1=N [25],

n�p; t� ’ 2�l20= �h�j!0= _bj
���������������������������������
P2
F � �!0p= _b�2

q
: (10)

with PF � �h
�������
2N

p
=l0 being the Fermi momentum.

We estimate the characteristic time, tF, for such ‘‘dy-
namical fermionization’’ by considering that in the
Thomas-Fermi regime the one-body density matrix de-
pends on coordinates only through the dimensionless ratios
x=R and y=R. By rewriting Eq. (8) in such rescaled coor-
dinates and in terms of p=PF we see that the large parame-
ter governing the dynamic phase in Eq. (8) is Nb _b=!0, and
thus we find tF � 1=N!0 � �h=EF, EF being the Fermi
energy.

Equation (9) provides an accurate description of the
momentum distribution for long times and for small mo-
menta p � PF. We proceed now to derive the second exact
result regarding the large momentum behavior of n�p; t� at
all times. From the scaling solution (6) it follows that
during its time evolution the many-body wave function
displays the same type of cusp singularity as in its equi-
librium configuration. Since no additional singularity is
present in the dynamical phase, this cusp determines alone
the large momentum behavior of the momentum distribu-
tion, as in the case of the equilibrium solution [10]. Hence,
we find a power-law decay of the momentum distribution
at large p, with an additional time-dependent suppression
factor which originates from the dilatation of the interpar-
ticle distances during the expansion,

n�p; t� � p�4b�3: (11)

This complements the result (9) showing that at time t �
1=!0 the fermionization of the momentum distribution is
complete and the large-p tails are negligible.

We have tested the above predictions and explored the
expansion at early times by numerically evaluating the
momentum distribution Eq. (8) with a fast Fourier trans-
form method using the explicit expression of the initial-
time one-body density matrix in terms of a determinant of
Hankel type [9]. The results, reported in Fig. 1, show that a
broad Fermi distribution rapidly develops during expan-
sion, followed by small adjustments of the quantum shell
oscillations, while the p�4 tails become less and less
important at long expansion times.

Oscillations.—As a second example, we consider now
the case of an abrupt change of the trap frequency which
induces large-amplitude ‘‘breathing’’ oscillations in the
gas; i.e., we set !�t � 0� � !0 and !�t� � !1 for t > 0,
with !1 <!0. The solution of Eq. (5) is
24040
b�t� �
����������������������������������������������������������
1� �!2

0 �!2
1�sin

2�!1t�=!
2
1

q
(12)

which describes periodic oscillations between one and
!0=!1 with period T � !=!1.

The dynamical evolution of the cloud in coordinate
space is described, according to Eq. (7), by the self-similar
breathing of the density profile with a time law given in
Eq. (12). Notice that the solution (12) implies that the
oscillation is undamped. The time evolution in momentum
space, given by Eq. (8), displays a richer structure, and, in
particular, an oscillating behavior between a bosoniclike
and fermioniclike momentum distribution which is illus-
trated in Fig. 2. The main features of the dynamics may be
understood by the following analytical considerations.
When the condition Nb _b=!0 > 1 holds, the stationary
phase method can be employed, yielding that a time-
dependent Fermi-like structure develops as in Eq. (9),
and that the large-wavevector tails are suppressed as in
Eq. (11). In the regime N � 1 and !0 � !1 this result is
valid for most values of t, and closely resembles the
dynamics of an ideal Fermi gas. The latter is given by
the exact expression [26]

n�p; t� � B�t�nF�B�t�p�: (13)

with B � b=
����������������������������
1� b2 _b2=!2

0

q
being related to the scaling of

the kinetic energy [B�t� � 1 for the expansion]. In a small
time interval !0�t � N�1!2

0=�!
2
0 �!2

1� around the turn-
ing point t � T=2 the fermionic description does not hold.
There, using Eq. (8) we find that the atomic cloud recovers
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FIG. 2 (color online). Momentum distribution of an oscillating
Tonks gas with N � 9 and !0=!1 � 10 at different times (in
units of T � !=!1) indicated on the panels, from numerical
solution (solid lines) and Thomas-Fermi approximation (dashed
lines). The units are indicated on the axis labels.
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the initial bosonic momentum distribution rescaled by a
factor bmax � !0=!1, according to n�p; T=2� �
bmaxn�bmaxp; 0�.

In conclusion, we have shown that the dynamical phase
acquired by the many-body wave function during the evo-
lution is responsible for the dynamical fermionization
found in the 1D expansion and that during a large-
amplitude breathing mode the cloud displays oscillations
in momentum space between a Fermi-like and a Bose-like
structure.

In this work we have considered only the Tonks-
Girardeau limit of the Lieb-Liniger model. In this case
the scaling transformation is exact and predicts a coherent,
undamped motion of the cloud, which is a very peculiar
feature of the Tonks regime. We suggest that the absence of
damping in the breathing modes may be used to character-
ize the truly Tonks regime: for finite values of the coupling
strength we expect instead a damped motion of the oscil-
lations. Our predictions directly apply to the experiments
on ultracold atomic gases in tight optical traps, where the
time evolution of the momentum distribution should be
experimentally accessible by allowing a 3D expansion of
the cloud [13].
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