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Fermionization in an Expanding 1D Gas of Hard-Core Bosons
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We show by means of an exact numerical approach that the momentum distribution of a free expanding
gas of hard-core bosons on a one-dimensional lattice approaches that of noninteracting fermions,
acquiring a Fermi edge. Yet there is a power-law decay of the one-particle density matrix �x � 1=

���
x

p
,

as usual for hard-core bosons in the ground state, which accounts for a large occupation of the lowest
natural orbitals for all expansion times. The fermionization of the momentum distribution function, which
is not observed in equilibrium, is analyzed in detail.
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At very low temperatures and densities a one-dimen-
sional (1D) gas of bosons is expected to behave as a gas of
impenetrable particles known as hard-core bosons (HCB)
[1]. Two recent experiments successfully achieved the re-
quired parameter regime and made HCB a physical reality
[2,3]. In contrast to bosons in higher dimensions, 1D HCB
share many properties with noninteracting spinless fermi-
ons to which they can be mapped [4]. Thermodynamic
properties like the total energy, and microscopic properties
like density profiles, are identical in both systems. On the
contrary, quantities like the momentum distribution func-
tion (nk) [5] and the so-called natural orbitals (NO) [6] are
very different for HCB and spinless fermions. This is due
to the different behavior of the off-diagonal elements of the
one-particle density matrix (OPDM) in both systems (see,
e.g., Ref. [7]).

An important point for the comparison between experi-
mental results and theory in Refs. [2,3] has been the
awareness of the effects of the trapping potential in the
properties of the HCB gas. On a harmonic trap it has been
found that the power-law decay of the OPDM �ij � jxi �
xjj�1=2, known from homogeneous systems [5], is renor-
malized by a factor that depends on the density at points i
and j. This factor is proportional to �ninj�1=4 for continuous
systems [8], and to �ni�1� ni�nj�1� nj��1=4 for HCB on a
lattice [9]. Furthermore, the power-law decay of the
OPDM has been found to be universal independently of
the power of the confining potential [9]. Even for systems
out of equilibrium, that start their evolution from a totally
uncorrelated state, the power law above develops dynami-
cally and leads to the emergence of quasicondensates at
finite momentum [10].

In this work we show that during the free expansion of
1D HCB in a lattice a further degree of fermionization
takes place; i.e., nk of the HCB becomes for long expan-
sion times equal to that of noninteracting fermions, dis-
playing a Fermi edge. This feature, absent in equilibrium,
can be easily confirmed experimentally with a setup like
the one in Ref. [3] where the expansion of the 1D gas was
studied after removing the axial confinement. Other quan-
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tities like the OPDM and the NO still evidence the strongly
interacting character of the HCB system.

We obtain the exact dynamics of expanding clouds of
HCB on 1D lattices on the basis of the Jordan-Wigner
transformation, which maps the HCB Hamiltonian into
that of spinless fermions [10]. Apart from being exact,
our method allows one to consider relatively large number
of particles and system sizes, which can be even larger than
the ones in the present experimental setups. Results for
continuous systems can be extrapolated from very low
densities in the lattice [9]. At time � 	 0 we switch off
the trapping potential, and start the time evolution from the
ground state of the HCB Hamiltonian

HHCB 	 �t
X

i

�byi bi�1 � H:c:� � V2

X

i

x2i ni; (1)

which has the additional on-site constraints by2i 	 b2i 	 0,
fbi; b

y
i g 	 1. In Eq. (1), byi and bi represent the HCB

creation and annihilation operators, respectively, ni 	
byi bi the particle number operator, t the hopping parameter,
and V2 the curvature of the harmonic confining potential.

In order to characterize the initial state, we use the
characteristic density ~� 	 Nba=� [9,10], which for
trapped systems plays a similar role than the density in
periodic systems. Nb is the number of HCB, � 	

�V2=t�
�1=2 is a length scale of the trap in the presence of

the lattice, and a is the lattice constant. The quasimomen-
tum distribution function nk is also normalized by the
length scale � as nk 	 �a=��

P
ije

�ik�i�j��ij, with �ij 	

hbyi bji. In addition, we define the Fermi momentum kF
associated with the fermions as �F 	 �2t cos�kFa�, where
�F is the energy of the last occupied fermionic single-
particle state in the trap at � 	 0. (Although in the trap
nk is continuous at kF, it is possible to see that nk ap-
proaches zero even faster than exponentially for k > kF.)

In Fig. 1 we show nk for an expanding gas of HCB at
four different times, and compare it with that of noninter-
acting fermions (which does not change during the expan-
sion). Several issues are evident: (i) Shortly after switching
off the trapping potential, the peak at nbk	0 disappears.
3-1  2005 The American Physical Society
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FIG. 1 (color online). nk for 100 HCB expanding from an
initial state with ~� 	 0:51, compared to the value for the
corresponding fermions. Times (�) are given in units of 
h=t,
and kF denotes Fermi momentum as defined in the text.
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(ii) For k < kF a redistribution of the population of k states
takes place, such that starting from k� 0, nk of HCB
matches in time the one for fermions. (iii) k states with k >
kF become less populated and an edge develops at kF. The
overall process leads to a value of nk for the HCB that is
equal to that of the fermions.

After observing the fermionization of nk for HCB, one
could naively expect that something similar could be hap-
pening with the NO occupations. The NO (��

i ) are the
eigenfunctions of the OPDM

P
j�ij�

�
j 	 ���

�
i [6]; i.e.,

they are effective single-particle states with occupations
��. For noninteracting fermions the NO are the eigenfunc-
tions of the Hamiltonian and their occupation is one. We
find that in contrast to nk the NO occupations do not
fermionize, as can be seen in Fig. 2 for the same parameters
of Fig. 1.

There are two features of the NO occupations that we
find worth noticing. The first one, which is difficult to
distinguish in Fig. 2, is that the lowest natural orbitals
slightly increase their occupations during the expansion
of the gas. This can be intuitively understood as an increase
of the ‘‘coherence’’ of the system due to an increase of the
system size, which delocalize the HCB over more lattice
sites. Something similar occurs in the ground state occu-
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FIG. 2 (color online). Occupation of the NO vs � for the same
initial trap parameters and times of Fig. 1. The thin dashed line
corresponds to a power law ��4, which is known from equilib-
rium systems at low densities [9].
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pations of the lowest natural orbitals when for the same
number of particles the curvature of the trap is decreased
[9]. However, in equilibrium systems, nk	0 also increases
with the increase of �0. The apparent contradiction be-
tween the decrease of nk	0 and the increase of �0 in the
expanding gas can be resolved observing the Fourier trans-
form of the lowest NO at � 	 0 and � > 0. As can be seen
in Fig. 3, initially j�0

kj has a peak at k 	 0 showing that
quasicondensation occurs around k 	 0, and this is re-
flected in nk. For � > 0 the lowest NO becomes an ex-
tended object in k space so that the HCB forming the
quasicondensate have many different momenta, basically
as many as nk in Fig. 1. Hence, there is no contradiction
between the observed behavior of the NO occupations and
nk, although the last one is clearly different from that of
systems in equilibrium.

The second feature that is worth noticing, sets in only
when the density of the expanding HCB becomes very low.
Then the universal power-law decay of the NO occupations
for large � (�� � ANb

��4), known from equilibrium sys-
tems [9], also appears in nonequilibrium (Fig. 2). In
Ref. [9], the prefactor of the power law ANb

was found to
depend only on Nb independently of the confining poten-
tial. We find out of equilibrium that ANb

is exactly the same
than in the ground state case [9]. For Nb 	 100 we have
plotted �� 	 ANb

��4 in Fig. 2. The long tail of the mo-
mentum distribution function nk � jkj�4, that in equilib-
rium appears together with the �� � ��4 [9], is in general
not present in nonequilibrium since for large �, nk for HCB
starts to behave like that of fermions (inset in Fig. 3).

Considering the previous results for the behavior of the
NO occupations, which is similar to that known in equi-
librium [9], one expects that the OPDM should behave
similarly. Since in nonequilibrium �ij 	 j�ijje

i�ij is in
general a complex object, in order to compare with equi-
librium systems we first study its modulus. Results for the
same systems of Figs. 1–3 are shown in Fig. 4(a).
Figure 4(a) shows that j�ij���j have exactly the same
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FIG. 3 (color online). Fourier transform of the lowest NO, and
nk in a logarithmic scale (inset), for the same initial trap
parameters and times of Figs. 1 and 2. kF (vertical dashed
line) denotes Fermi momentum.
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FIG. 4 (color online). Modulus of the OPDM (a) and its phase (b)–(d) for the same initial trap parameters and times of Figs. 1–3.
Both quantities have been evaluated with respect to the middle of the expanding cloud of HCB. Thin continuous lines in (a) correspond
to power laws jxi � xjj

�1=2.

PRL 94, 240403 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
24 JUNE 2005
form as �ij in equilibrium systems [9]. For large values of
jxi�xjj a power-law decay j�ijj�jxi�xjj�1=2 can be
observed for all times, and the prefactor of the power law
decreases with the reduction of the local densities in the
system. Hence, the slow decay of the one-particle correla-
tions accounts for the large (�

������
Nb

p
) occupation of the

lowest NO. On the other hand, Figs. 4(b)–4(d) show that
the phase of the OPDM (�ij) starts to increasingly oscillate
at large distances. In particular, Fig. 4(b) shows that after a
very short time, when the modulus of the OPDM has
almost not changed, �ij has started to oscillate for jxi �
xjj � a producing a fast destruction of the zero momen-
tum peak in nbk , as shown in Fig. 1.

In order to gain further insight into the fermionization
described above, we observe that for noninteracting parti-
cles, given the initial one-particle density matrix �ab, the
density profile at time � can be evaluated as [11]

ni��� 	
X

ab

G�
i;a���Gi;b����ab; (2)

where the free one-particle propagator can be written in the
form Gi;j��� 	

P
ke

�i�= 
h��k� 
hk�xi�xj�=��, �k being the disper-
sion relation. Fourier transforming the initial OPDM into
%k1;k2 and performing straightforward integrations, Eq. (2)
can be rewritten as

ni��� 	
X

k1;k2

%k1k2e
i�= 
h��k1� 
hk1x=��e�i�= 
h��k2� 
hk2x=��

’
1

��00k	k0�xi=��

%k1	k0�xi=��;k2	k0�xi=��; (3)

where in the last step we have assumed � to be very large
and performed the summations using the saddle point
approximation. [k0�xi=�� is determined by the expression
�0k0 	 
hxi=�, where the prime means ‘‘k-derivative.’’]
Equation (3) shows that for � ! 1 the density profile is
only determined by a rescaling of the diagonal part of
%k1;k2 , which is nothing but nk. In the continuum limit �k 	
24040

h2k2=2m and n�x; �� ’ �m=��~n�k 	 mx= 
h�� [~n�k� is the
momentum distribution function], which is a known result
that can be also obtained by other means [11]. Since the
arguments above are valid for both fermions and bosons,
the fact that nk of HCB converges on that of fermions after
expansion could be explained at this point if, after a certain
time, the expanding HCB could be considered as noninter-
acting. This would mean that nk for HCB would be deter-
mined by a rescaling of the density profile that, on the other
hand, both in the continuum [12] and on the lattice [9,10] is
the same as that of fermions due to the mapping connecting
both.

However, a noninteracting treatment of the HCB expan-
sion is invalidated by Fig. 4(a). There it is shown that at all
times, even after fermionization, the density matrix decays
as 1=

���
x

p
, a power that corresponds to HCB, and hence, the

system corresponds to strongly interacting particles.
Therefore, the expansion out of equilibrium leads to a
new kind of bosonic state, with a Fermi edge in the
momentum distribution function but still the effective
one-particle states, as given by the natural orbitals, exhibit
a high occupation as expected for bosons.

In what follows we study how exactly the fermionization
of the momentum distribution for bosons nbk occurs in time,
and how it depends on experimental parameters like num-
ber of particles and characteristic densities. For that we
analyze the relative area between nbk and the momentum
distribution for fermions nfk , ! 	 �

P
kjn

b
k � nfk j�=�

P
kn

b
k�.

This is shown in Fig. 5(a) for ~� 	 0:51 and different
fillings of the trap. Figure 5(a) shows that changes in nbk
occur fast in terms of the characteristic time of the system,
which is given by 
h=t. In addition, if one chooses a
criterion like ! 	 0:05 to state that nbk has fermionized, it
is possible to see in the inset of Fig. 5(a) that for a given
characteristic density the fermionization time (�F) grows
linearly with the number of HCB in the trap.

Another question that is important to answer is the
consequence of changing ~� in the ground state of the
3-3
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FIG. 6 (color online). Fermionization of nbk during the expan-
sion of the gas. For ~� 	 3:0 and 4.0 a Mott insulator is formed in
the middle of the trap. The behavior for a pure Fock state (Fock)
with one particle per lattice site is also shown.
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FIG. 5 (color online). Fermionization of nbk during the expan-
sion of the gas. (a) Decrease of ! (see text) as a function of time
for ~� 	 0:51; Nb 	 51 (dashed line), Nb 	 100 (solid line),
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trap. In order to compare systems with different ~�, i.e.,
different nk, we display in Fig. 5(b) the ratio R between the
size of the cloud once ! 	 0:05 and its initial size.
Figure 5(b) shows that with decreasing ~� the ratio R
reduces up to �2:5, and that for ~� > 0:5 it increases very
fast. For low ~�, such that the averaged interparticle dis-
tance is much larger than the lattice spacing, the initial
lattice gas is equivalent to the one in continuous systems.
This means that a fermionized nbk will be more easily
observed in continuous systems [3] than in the lattice [2].
(In the continuous case, the asymptotic fermionization of
nbk was obtained previously in Ref. [13].) In addition, the
inset in Fig. 5(b) shows that the ratio R remains basically
constant for a given characteristic density when the number
of particles in the trap is changed.

Increasing the characteristic density of the initial system
beyond the values in Fig. 5(b) one starts observing a
behavior of ! which is different from the one seen in
Fig. 5(a). The reason is that particles become more local-
ized in the middle of the trap, and eventually after
~�� 2:6–2.7 a Mott insulator appears in the system. This
localization effect also generates an nbk which approaches
that of the fermions in the initial state. [In the limit of all
lattice sites with occupation one [10], nbk�� 	 0� 	 nfk .]
When such systems are released from the trap, quasi-long-
range correlations start to develop between initially uncor-
related particles and they lead to the formation of traveling
quasicondensates [10]. This generates a value of nbk��� at
short times that may be more different from nfk than nbk�� 	
0�, as it can be seen in Fig. 6. However, after long times one
can see that a fermionization of nbk starts to occurs as before
for smaller ~�. One should notice that as shown in Fig. 6, the
time scales for the fermionization process for large ~� are
very long, and always start affecting the low-momenta
region first, so that still the dynamically generated quasi-
condensates, which have k��#=2, could be used as atom
lasers [10].
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In summary, we have shown that during the expansion of
a 1D gas of HCB the momentum distribution function
becomes equal to that of the equivalent noninteracting
fermions. This is an effect that can be seen experimentally
in systems with [2] and without [3] an optical lattice along
the 1D axes. On the other hand quantities like the NO and
the OPDM still display the known behavior in equilibrium
systems. In this way starting from a strongly interacting 1D
Bose gas one can realize a very unconventional system of
bosons displaying a Fermi edge on its momentum distri-
bution function.
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