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Stationary Vortical Flows in Two-Dimensional Plasma and in Planetary Atmospheres
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We derive the equation governing the asymptotic stationary states generated by decaying turbulence in
two-dimensional plasma and planetary atmosphere. These fluids may be described by the Charney-
Hasegawa-Mima equation and their relaxation states show a high degree of organization in vortical flows,
similar to the Euler fluid. We develop a field-theoretical framework and show that these systems attain at
stationarity the extremum of an energy functional corresponding to self-dual fields.
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The drift wave in plasma placed in strong magnetic field
and the nonlinear Rossby wave in the planetary atmosphere
can be described in a convenient approximation by a single
scalar field in two-dimensional geometry. This scalar � is
the stream function for the Rossby wave and the electro-
static potential for the plasma drift wave, and it obeys the
nonlinear differential equation
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This equation has been derived by Charney in the physics
of atmosphere [1] and by Hasegawa and Mima in plasma
physics [2]. In the following we will only use plasma
physics terms and the equivalence can be found in
Ref. [3]. Then � is the electrostatic potential, bn is the
direction of the magnetic field, �x; y� are the radial and
poloidal coordinates in a plasma confinement geometry
(like in tokamak), and v�bey � bn�r? lnn0, with n0�x�
the density and bey the versor along y. The physical (super-
script phys) variables are normalized as: � � jej�phys=Te,
�x; y� � �xphys=s; y

phys=s�, t � tphys
ci, where 
ci �
jejB=mi, s � cs=
ci, c2s � Te=mi. Here B is the mag-
netic field, jej and mi are the ion electric charge and mass,
and Te is the electron temperature.

Numerical studies of the Charney-Hasegawa-Mima
(CHM) equation [4–6] have shown that in the absence of
drive and with very low viscosity the plasma evolves to
states of organized flow consisting of few vortices with
regular shape. This is very similar to the case of the two-
dimensional ideal Euler fluid, where it has been found that
the relaxation states are highly ordered and the stream
function obeys the sinh-Poisson equation [7,8] (and refer-
ences therein). The sinh-Poisson equation has first been
inferred from numerical experiments and later derived
along two lines of argumentation. In the first one it has
been considered a statistical system of pointlike vortices
interacting in plane by a potential expressed as the natural
logarithm of the relative distance [9,10]. The equation
corresponds to the most probable state. The second ap-
proach has developed a field-theoretical formalism for the
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continuum limit of the discrete vortices model and has
shown that its action functional is extremized by self-
dual states (which saturate the Bogomol’nyi bound) [11].
The fluid evolves to states that in field theory are known as
self-dual.

There is a discrete vortex model for the CHM equation
as well. It has been proposed by Stewart [12] and
Morikawa [13] and consists of a discrete set of N pointlike
vortices with vorticity !k with the equations of motion
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where W � ��N
j�i!i!jK0�jri � rjj� is the Kirchhoff

function and K0 is the modified Bessel function. We insert
explicitly the physical space scale, m � �1

s , and define
the partial contributions  j�r� to the potential  

 �r� �
XN
j�1

 j�r� 
XN
j�1

!jK0�mjr� rjj�: (2)

We note that they verify the equation ��m2� j�r� �
�2�!j��r� rj� and that the equations of motion (1) can
be written dr=dt � �r � bn. This has the same form as
in the Euler fluid case, but there the potential  is the Green
function of the Laplace equation, i.e., m � 0. In the CHM
case, the pointlike vortices interact via a potential with
short range. This is the intrinsic spatial scale of the CHM
equation s � m�1 [3].

The original models for Euler and CHM fluids are ex-
pressed in terms of stream function, velocity, and vorticity,
fields that have clear physical meaning. Relative to this, the
fundamental characteristic of the equivalent discrete vortex
models is that they exhibit a different structure: matter
(vortices), field (the potential), and interaction. Because
of this characteristic the continuum versions of these mod-
els can be formalized as field theories. We will do this for
the CHM discrete vortex model by constructing a
Lagrangian density. It will result that the action functional
is extremized by a particular subset of states, correspond-
ing to self-duality. As in the case of Euler fluid, the CHM
3-1  2005 The American Physical Society
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fluid evolves to these states. We find the differential equa-
tion that governs these states.

The Lagrangian density should contain (1) a term for the
free gauge field that produces the potential of interaction
between the vortices; (2) terms for the matter (related to the
density of vortices); there will be terms for the kinematic
part and for the nonlinear self-interaction; (3) minimal
coupling between gauge and scalar fields, via the covariant
derivatives.

The potential in the CHM model has short range (finite-
mass ‘‘photon’’) and can be written as a derivative of the
angle between r� rj and an arbitrary direction. This re-
sults from the relation "��r�=r2 � �@!=@r� and noticing

that in the equations of motion dr�i =dt �

"���N
j�i!j

r��r�j
jr�rjj2

�mjr� rjjK1�mjr� rjj�
, the factor in

the square brackets is not singular in the origin and it
only affects the spatial decay. The fact that the potential
is pure gauge at infinity ��r � bn�� � g�1dg, with g 2
U�1�, i.e., g � exp�i$�, shows that it is a topological map-
ping between the circle at infinity on the plane and the
group U�1� and suggests to adopt for the gauge field the
Chern-Simons Lagrangian density LCS � %

2 "
��&A�@�A&,

where "��& is the totally antisymmetric tensor in 2� 1
dimensions [�, �, and & can take three values: 0, 1, 2,
corresponding to the time and the two coordinates �x; y�]
and % is a constant. It is known that this Lagrangian does
not lead by itself to dynamical equations for the potential
A( since it is first order in the time derivatives; it only
represents a constraint on the dynamics, analogous to the
Lorentz force in an external magnetic field. The Chern-
Simons action is a generalization of the helicity: it is a
topological quantity whose density is an exact differential
form.

The matter field ��x; y; t� must be complex since the
vorticity carried by any pointlike vortex appears as a sort of
electrical charge. The kinematical part of the matter field in
the Lagrangian consists as usual in the squared momentum
but with the covariant derivatives, to reflect the minimal
coupling with the gauge field Lkin � ��D(��y�D(��,
where D( � @( � A(. The nonlinear self-interaction of
the matter field is expressed as a potential V��� and must
ensure, via classical Higgs mechanism, the generation of a
finite mass m for the photon. If in addition we ask to
support self-duality [14,15] then V��� � j�j2�j�j2 �
v2�2 (where v2 is a constant).

We consider the case where all discrete vortices have the
same absolute vorticity ! with two possible signs corre-
sponding to positive and negative vorticity. Since the scalar
field � results from the density of positive and negative
vortices, we note that the elementary vortices have much in
common with complex Weyl spinors. It is then appropriate
to work in the most general formulation, in which the fields
� and A( belong to the adjoint representation of the SU�2�
algebra. Then the Lagrangian density has the expression
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[16,17],

L � �%"(,tr
�
@(A,A �

2

3
A(A,A

�
� tr ��D(��y�D(��
 � V��;�y� (3)

with
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This is the �2� 1�-dimensional field-theoretical frame-
work for the continuum limit of the CHM pointlike vortex
model. Here D( � @( � �A(; 
 and the y means
Hermitian conjugate. The Euler Lagrange equations are
D(D

(� � @V
@�y , �%",(F( � iJ,, where the field

strength is F(, � @(A, � @,A( � �A(; A,
. The current
is J( � �i���y; D(�
 � ��D(��y; �
� and the Gauss law
constraint is �2%F12 � iJ0 or 2%F12 � ��y; D0�
 �
��D0��

y; �
. Very detailed calculations are presented in
[18]. The action functional for the Lagrangian density (3)
can be written in the Bogomol’nyi form [17], from which
one derives that the extremum of the action is realized by
the states verifying the self-duality equations
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where D�  D1 � iD2, A�  A1 � iA2, and F�� 
@�A� � @�A� � �A�; A�
.

As suggested in previous works [19,20], the following
algebraic ansatz can be adopted

� � �1E� ��2E�; �y � ��
1E� ���

2E�;

A� � aH; A� � �a�H:

For this rank 1 algebra the Chevalley basis is fE�; Hg with
�E�; E�
 � H, �H;E�
 � �2E�, tr �E�E�� � 1,
tr �H2� � 2. Using the ansatz and introducing the notations
1  j�1j

2, 2  j�2j
2 we obtain for the second self-

duality equation
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The first self-duality equation leads to
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and two analogous equations derived from the Hermitian
conjugate of the first self-duality equation, �D���

y � 0.
From here we obtain  ln1 � � 1

%2 �1 � 2��2�1 �

2� � v2
 and �ln2�� 1
%2
�1�2��2�1�2��v

2
.
The two equations are combined to give  ln�12� � 0.
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FIG. 1. Plot of the pair � ;!�.
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We adopt the simplest solution of the Laplace equation (see
below) and choosing the constant of integration we have
12 � v4=�16p2�, with p a positive constant. Then using
the normalizations   1

v2=�4p� �
v2=�4p�
2

we write the equa-

tion for 1
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Making the substitution   ln we obtain 2p2� %
v2
�2 �

sinh �cosh � p� � 0. The same equation is obtained
starting from the equation for 2, after a change of the
unknown function,  ! � . We scale the coordinates and
obtain

 �
1

2p2 sinh �cosh � p� � 0: (9)

This is the equation governing the stationary asymptotic
states of the CHM equation.

The physical meaning of the constant v2=% becomes
clear when we investigate the far region on the plane.
There the scalar function is approximately constant and
close to the vacuum value, v2. Then we obtain for the
current J( ’ 2iv2A(. Using this expression in the second
equation of motion F34 � � i

2% "(34J
( we obtain the

equation @4@4A0 � �v
2

% �
2A0 � 0. The solution of this equa-

tion is, in cylindrical geometry, A0�r� � K0�mr�. From
here we conclude that the mass of the photon is

m �
v2

%
(10)

and this mass is generated via the Higgs mechanism
adapted to the Chern-Simons action (see review by
Dunne in [20]). The photon acquires a mass because it
moves in a background where the scalar field is equal with
the vacuum value, v2, which is not zero. This mass induces
the short spatial range of the interaction in the discrete
vortices model, introduced by Stewart and Morikawa in
meteorology. We have m � v2=% � 1=s. In physical
terms %  cs, v2  
ci. The vortical flows of the CHM
equation are excitations over the background of ‘‘vortic-
ity’’ represented by the Larmor gyration, intrinsically
present in the CHM equation.

For different values of p, the differences are reflected in:
the unit of space, s=p; the stream function  is shifted
with lnp; and the second factor of the nonlinear term in the
equation may have both signs. The plot of the pair � ;!�
for p � 10 is shown in Fig. 1.

We can compare qualitatively with experimental results,
obtained for the turbulence in fluids of geophysical interest
[21]. We note that our Fig. 1 is very similar to the scatter
plots presented in Figs. 21 of [21]. Comparison with nu-
merical simulations of Seyler [22] show the close similar-
ity between our graph � ;!� with the figures presented in
this reference.
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The vortex solutions of the equation we have derived
have the property that the vorticity ! �  and the am-
plitude of the density of the scalar function ���y must
vanish at the same points, as shown by the second of the
self-duality equations, Eq. (5). There are many situations
where the vortex in atmosphere has a ‘‘doughnut’’ shape.

In general we have a family of differential equations
parametrized by solutions of the Laplace equation,
 ln�12� � 0. In cylindrical geometry one can take
12 � �H! � G��C lnr � D� � �1

n�1�Ar
n � Br�n� �

�E cos�n!� � F sin�n!�
 (A . . .H constants). This might
explain the scatter plots (see Fig. 5 of Ref. [23]) where a
clear dependence of ! to  could not be identified.

The equation (9) describes systems defined by two
elements: (1) a condensate of vorticity at infinity v2 and
(2) an intrinsic space scale s (or, equivalently, a finite
sound speed, %).

Since no auto-Backlund transform exists [24] this equa-
tion is probably not exactly integrable by the inverse
scattering transform. The equation is difficult to integrate
numerically, too. We have implemented the code GIANT

[25] and have carried out a very large number (still insuf-
ficient) of numerical experiments. On rectangular space
domains with dimensions from a fraction to few units of
the fundamental length s we obtain systematically solu-
tions of the symmetric vortex type. They cover several
interesting physical systems. For the atmospheric vortex
we obtain the morphology of the typhoon, with sharp
decrease of the azimuthal velocity toward the center and
much slower decay toward the periphery, Fig. 2. The
vorticity is concentrated in the center and is almost zero
in the rest. The diameter of the circle of maximum tangen-
tial wind (the eye) and the vorticity are in reasonable range
but the velocity is higher than in observations, possibly due
to the 2D geometry and the absence of viscosity in our
model (see [26] for details). For the plasma vortex [27],
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FIG. 2. The azimuthal velocity for a typical solution of Eq. (9)
at p � 1. We use transparency to show the fast decrease of v! in
the center.
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after identifying an effective space scale s ! eff , the
solution of Eq. (9) reproduces satisfactorily the experimen-
tal data for the vorticity and the azimuthal velocity profiles.
We also obtain as approximative solutions sets of vortices
with extremely narrow vorticity concentrations and almost
zero on the rest of the space domain, similar to the crystal
of vortices observed in non-neutral plasma. Here the con-
densate of vorticity is generated by the constant density of
electric charge.

In conclusion, we have presented a field-theoretical
framework for the pointlike vortices models of two-
dimensional plasma and atmosphere. We have shown that
the extremum of the action corresponds to stationary self-
dual states and we have found the differential equation
governing these states. The comparison with the experi-
ment and numerical simulation is favorable.
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