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Compression of Laser Radiation in Plasmas Using Electromagnetic Cascading
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Compressing high-power laser beams in plasmas via generation of a coherent cascade of electromag-
netic sidebands is described. The technique requires two copropagating beams detuned by a near-resonant
frequency � & !p. The ponderomotive force of the laser beat wave drives an electron plasma wave
which modifies the refractive index of plasma so as to produce a periodic phase modulation of the laser
field with the beat period �b � 2�=�. A train of chirped laser beat notes (each of duration �b) is thus
created. The group velocity dispersion of radiation in plasma can then compress each beat note to a few-
laser-cycle duration. As a result, a train of sharp electromagnetic spikes separated in time by �b is formed.
Depending on the plasma and laser parameters, chirping and compression can be implemented either
concurrently in the same plasma or sequentially in different plasmas.
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FIG. 1. Schematic of a two-stage EM cascade compressor. The
frequency modulation (FM) occurs in a rarefied plasma. Denser
plasma is used for the compression.
For nearly two decades the chirped-pulse amplification
(CPA) has been the dominant technique of generating
ultrashort high-power laser pulses [1]. The basic premise
of the CPA is to avoid optical nonlinearities of the ampli-
fied pulse by stretching it in time, thereby preserving its
spectral characteristics. Recently, the exact opposite ap-
proach has been proposed by several groups: an advantage
is taken of the nonlinearities in order to increase the
frequency bandwidth of the pulse and reduce its duration.
For example, nonlinear processes in gaseous media such as
Raman cascading [2] and generation of high harmonics [3]
have been utilized for making ultrahigh-bandwidth pulses.
These pulses can be compressed to an ultrashort duration in
another gaseous medium (further referred to as a compres-
sor) with a high group velocity dispersion (GVD). These
techniques cannot be extended to ultrahigh laser intensities
exceeding the ionization threshold. Fortunately, nonlinear
properties of a fully ionized plasma can be used for in-
creasing the laser bandwidth via phase modulation due to a
near-resonant beat wave excitation of electron plasma
waves (EPWs). The natural GVD of plasma can compress
the resulting broad-bandwidth radiation into spikes of
femtosecond duration.

In this Letter we demonstrate that nonlinear coupling
occurring in plasma between two incident copropagating

laser beams with a near-resonant detuning, � � !p�M� �������������������������������
4�e2n0�M�=me

q
, results in the generation of a coherent

electromagnetic (EM) cascade that consists of multiple
Stokes–anti-Stokes components (here, n0�M� is the electron
plasma density, and me and �jej are the electron rest mass
and charge). These EM sidebands, having frequencies
!n � !0 � n� and wave numbers kn � k0 � nk�, are
arranged in time and space so as to produce a periodic
frequency modulation with the period of laser beat wave
�b � 2�=� [here, k� � �=vg�M�, �M & n & M is an
integer, vg�M� � c

����������������
1� dM

p
is the group velocity, dM �
05=94(23)=235001(4)$23.00 23500
n0�M�=nc is the normalized electron density, and nc �
me!

2
0=�4�e

2� is the critical plasma density for the funda-
mental laser frequency !0]. If the number of sidebands
2M is of the order of !0=�, and �<!p�M�, the GVD of
plasma can transform the broadband frequency-modulated
laser pulse into a train of ultrashort (few-laser-cycles)
radiation spikes separated in time by the beat period �b.
This can be done in a separate higher-density plasma where
the laser beat wave is detuned far from the plasma reso-
nance, and the EM sidebands are redistributed in space and
time by the plasma GVD with the resulting compression
effect. The envisioned setup (Fig. 1) thus consists of two
plasma stages: (i) a low-density plasma (further called the
modulator) with �<!p�M� in which the incident two-
frequency laser becomes frequency modulated (chirped),
and (ii) a higher-density compressor with !p�C� 	 �
where the linear amplitude modulation (compression) of
the laser beat notes occurs.
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The physical mechanism of the EM cascading is the
following. The ponderomotive laser beat wave drives an
electron density grating �n��� comoving with the laser
beams (where �=vg�M� � t� z=vg�M� is the retarded time
in the modulator), thereby creating a comoving index
grating �N � ���n=n0�M��dM=2. A time-dependent phase
shift, ��z; �� � �N!0z=c, can result in the nonlinear
phase modulation, frequency shifting, and chirping [4].
Our approach is based on preserving a nearly sinusoidal
temporal variation of �n. Hence, the resulting laser beam
consists of the equally spaced in frequency sidebands.
Those are arranged in time and space so as to give the
laser pulse a periodic in time chirp with the period �b. The
number of sidebands 2M proportional to the plasma
length z in the idealized case of negligible GVD can be
large, and considerable broadening of the laser bandwidth
can occur. When the GVD of radiation in the modulator is
non-negligible, the laser undergoes an amplitude modula-
tion as well. We show that proper adjustment of the plasma
length and density can reduce the GVD effect while pre-
serving the desirable frequency bandwidth.

In a realistic plasma, the EM cascading is a complicated
interplay between the GVD of radiation and the sideband
coupling through the driven electron density perturbations,
the nonlinearities due to the relativistic increase of an
electron mass, and the forward stimulated Raman scatter-
ing (FSRS). Our nonlinear analysis accounts for all these
effects and describes the cascade development in time and
one spatial dimension (1D). Because the longest time scale
of the problem is only a few ion plasma periods, parametric
decay of the EPW and consequent plasma heating [5] are
ignored, and plasma ions are assumed to be a positive
neutralizing background. Relativistic nonlinearities and
FSRS are found to be relatively unimportant for the chosen
parameters, and the EM cascading and compression pro-
ceed in agreement with the above qualitative scenario.
Numerical modeling also reveals the parameter regime
for which frequency and amplitude modulation proceed
concurrently, resulting in a single-stage compression of
laser beat notes.

We assume that the circularly polarized planar laser
beam incident on the modulator entrance, z � 0, consists
of two spectral components with the frequencies !0 and
!1 � !0 �� and amplitudes E0�!0; k0� and E1�!0 �
�; k0 � k��,

a �0; �� � Refe0e�i!0�=vg�M� �a0�0; �� � a1�0; ��e
�ik���g;

(1)

where je0j � 1 and an � eEn=�me!0c�. The EM cascade
in the modulator,

a �z > 0; �� � Re
�
e0

X�1

n��1

an�z; ��e�i!n�=vg�M�

�
; (2)

is induced by the electron density perturbation �n=nc �
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Re�Ne�z; ��e
�ik��� driven near resonantly by the laser beat

wave. Both an and Ne vary slowly on the time and space
scales ��1 and k�1

� . The cascade experiences a nonlinear
evolution in the modulator and then in the compressor
plasmas. In the weakly relativistic limit of jaj2 < 1, we
find from 1D Maxwell’s equations and hydrodynamic
equations of electron fluid that in the modulator plasma
the amplitudes of sidebands evolve as�
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: (3)

The nonresonant components of the electron density per-
turbation as well as the relativistic corrections to the elec-
tron mass are combined into the nonlinear frequency shifts
proportional to 	�M�

n � 
lan�l�lf
�M�
l , where �l �


mama�m�l, and f�M�
l � !2

p�M�
=�!2

p�M�
� l2�2� for l �

�1, and f�M�
�1 � 1. The term proportional to the normalized

electron density dM on the left-hand side (LHS) of Eq. (3)
describes the GVD of EM sidebands. The EPW amplitude
Ne satisfies the weakly nonlinear equation

�ik�1
� @=@�� �!l=��Ne � �3=16�jNe=dMj

2Ne

� ��0Ne � ��2N
�
e�=8 � dM���1=4�; (4)

where the second and third terms on the LHS are the
nonlinear frequency shifts coming from the relativistic
mass corrections due to the longitudinal and transverse
electron motion, respectively [6]. The initial condition is
Ne�z;�1� � 0 (unperturbed plasma ahead of the laser
pulse); ��1�z; �� is the normalized amplitude of the near-
resonant ponderomotive force, and �!l � ��2 �

!2
p�M��=�2�� is the beat wave detuning from the plasma

resonance.
Equations analogous to Eq. (3) (with !p�M�, vg�M�, dM,

�, and 	�M�
n replaced by !p�C�, vg�C� � c

���������������
1� dC

p
, dC �

n0�C�=nc, ! � vg�C�t� z, and 	�C�
n , respectively) model the

nonlinear evolution of the cascade in the dense compressor
plasma. The compressor density is such that!2

p�C� � n2�2

for an integer n; hence, the plasma response is nonreso-
nant. The amplitude Ne does not explicitly appear in the
compressor equations: it is absorbed into 	�C�

n as f�C��1 �

!2
p�C�=�!

2
p�C� ��2�. Solution of Eq. (3) at the exit of the

modulator (z � zM) is the initial condition for the cascade
equations in the compressor.

In the nonrelativistic case with GVD neglected,
scaling laws for the EM cascading are particularly simple.
From Eq. (3) with dM � 0 and !n � !0 follow the
conservation laws: @�l=@z � 0. Hence, �0�z; �� �
ja0�0; ��j2 � ja1�0; ��j2, ��1�z; �� � a1�0; ��a�0�0; ��,
�l � 0 for l � 0;�1, and, in the comoving frame, Ne is
independent of z despite the laser evolution. Thus simpli-
1-2
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FIG. 2. The two-stage compression of a chirped beat note.
(a) The beat note intensity at the entrance (z � 0, dashed line)
and exit of the modulator (z � z8, dash-dotted line) and after the
compressor (z � z8 � zC, solid line). (b) The laser spectra near
� � 0 shown after the modulator (z � z8, stairs) and after the
compressor (z � z8 � zC, bars). The nonlinearities and GVD in
both plasmas are included.
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fied Eq. (3) has the analytic [7] solution an�z; �� �

"�0;1a"�0; ��e

i�n�"�� ���Jn�"�2W� satisfying the initial
condition (1) [here, Jn�x� are the Bessel functions, and
 �z; �� and W�z; �� are the phase and absolute value of
the generating function w�z; �� � Wei � i�k0z=4�Ne���].
Substituting an�z; �� into Eq. (2) yields the expression for a
train of phase-modulated beat notes: a�z; �� �

"�0;1a"�0; �� cos�k"�� ’�z; ���, where ’�z; �� �
�k0z=2�jNe���j sin� � k���. The physical meaning of
this result is that, without GVD, the laser pulse undergoes
only frequency modulation. The magnitude of the plasma
wave depends only on the laser amplitude which remains
unchanged. This is valid for any pair of a0�0; ��, a1�0; ��,
and the corresponding Ne���.

The frequency modulation is periodic in time with the
beat period �b when Ne��� is almost constant (this is the
cases when the inequality j@��1=@�j � j��!l=)g�M����1j

holds). For j�!lj 	 ��=4�
���������������������
3j��1j

2=23
p

[8], Eq. (4) yields
Ne��� � dM���1���=4���=�!l�. For real ��1,

a�
X
n�0;1

an�0;��cos�kn���k0z=2�Ne���cos�k����: (5)

Hence, a modulator plasma slab of thickness zM �
2M=�Nek0� produces M sidebands on each side of
the fundamental, and a frequency bandwidth 	!�
2

�������
dM

p
M!0. Conversely, M� rezM+0jne � n0j, where

+0 � 2�c=!0 is the fundamental laser wavelength, and
re � e2=�mec

2� is a classical electron radius.
From Eq. (5) follows that only for �!l < 0 the laser

wavelength decreases with time near the amplitude maxi-
mum of each beat note. We define this chirp as positive.
The anomalous GVD in the dense compressor plasma
compresses thus chirped beat notes: the shorter-
wavelength (blueshifted) sidebands catch up with the
longer-wavelength (redshifted) ones, eventually building
up the field amplitude near the beat note center. With the
compressor nonlinearities neglected (	�C�

n � 0), and
plasma density, laser frequency, and the number 2M of
the Stokes–anti-Stokes satellites held fixed, the peak com-
pression occurs at a distance

zC � ��3k0M��1�!0=!p�C��
2�!0=��2: (6)

This estimate assumes that the outer sidebands were ini-
tially separated in time by roughly �b=2 within one beat
note. To catch up with the red sidebands at the beat note
center, the blue sidebands need the propagation time
zC=c � �c=	vg���b=2�, where the group velocity mis-
match is 	vg � 2M��@vg=@!�!0

� �3M�=k0��
�!p=!0�

2.
We model the EM cascading by numerically solving

the set of coupled nonlinear equations (3) and (4)
with the boundary condition a0�0; �� � a1�0; �� �
A exp���2=�c�L�2� for the EM fields, and Ne�z; � �
�1� � 0 for the EPW. The beat note compression in the
23500
second stage is modeled by numerically solving the com-
pressor equations described in the paragraph following
Eq. (4). The nonlinear effects of relativistic mass correc-
tion, nonresonant electron density perturbations, and FSRS
are included in the model. In all our simulations, +0 �
0:8 .m. Spectra and amplitudes of the chirped and com-
pressed single beat note (selected near � � 0 where Ne has
the maximum, and the phase modulation is the strongest)
are shown in Fig. 2. The chosen spectral width of the laser
at the exit of the modulator (M � 8 sidebands on each
side) and the maximum density perturbation jNe�z �
0�jmax � 0:5� 10�4 determine the modulator length z8 �
4:1 cm. Such interaction length could be implemented in a
plasma guiding structure such as a plasma channel.
Alternatively, using a loosely focused laser with a focal
spot of r0 � 70 .m would match the modulator length z8
with the twice the Rayleigh length, 2�r20=+0. The initial
laser amplitude A � 0:2, the modulator density n0�M� �

8:75� 1017 cm�3, and �!l � �0:1!p�M� were used for
this simulation. The laser pulse duration is taken as �L �
4:5� 10�12 s (about one ion plasma period for a fully
ionized Helium).

Figure 2(a) shows the beat note compression by a factor
of 7.2 in intensity and shrinkage from the initial duration of
�b�in� � 1:2� 10�13 s to roughly five laser cycles. This is
achieved in the compressor plasma of density n0�C� �
25n0�M� and length zC � 0:0275z8 � 1:1 mm (such a short
dense plasma can be created by ablation of a microcapil-
lary [9]). Note that the linear formula (6) overestimates zC
by a factor of 3 since it ignores both precompression of the
pulse in modulator [dash-dotted line in Fig. 2(a)] and
additional bandwidth increase due to the nonlinear fre-
quency shifts in the compressor.

By comparing the dash-dotted (with GVD) and dashed
(without GVD) lines, we observe a surprisingly small
effect of GVD on the laser pulse propagating in the modu-
lator. For the plasma density n0 � n0�M� the estimate (6)
1-3
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FIG. 3. The single-stage compressor with concurrent phase
modulation (chirping) and compression. (a) Initial (z � 0,
dashed line) and final (z � z8, solid line) intensity profiles of
one beat note. (b) Laser spectrum near the pulse maximum, � �
0, at the plasma border z � z8, with (bars) and without (stairs)
GVD and all the nonlinear frequency shifts.
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yields zC � 1:65z8, which suggests that a beat note com-
pression at the exit of modulator could virtually be large. A
qualitative reason for the lack of compression is that the
higher-order Stokes–anti-Stokes sidebands are generated
later and have less time to catch up with the fundamental.
Recalling that jaMj / jJM�z�j in the modulator, we define
the half-growth length zM;1=2 at which jaMj reaches half
of its maximum value, jJM�zM;1=2�j � jJM�zM�j=2.
Thereby, compression effectively takes place over the
shorter distance 	z � zM � zM;1=2 < zM. We find that
the analytic formula 	z � M�2=3zM accurately fits 	z
for M * 5. Therefore, 	z� zM for M 	 1. Hence, for
zM <M2=3zC the effect of the GVD is negligible in the
modulator section because the distance 	z actually avail-
able for the compression is less than zC. This is indeed the
case under the parameters of Fig. 2, where zC=	z � 6:6.
Otherwise, if zM >M2=3zC [or zM > �+0=6�M

�1=3d�2
M ],

the GVD is important in the modulator plasma.
We find this GVD-dominated regime advantageous for

the practically convenient single-stage compression. We
simulate it for the same plasma length z8 and the EPW
initial amplitude Ne as in Fig. 2; the electron density is now
doubled to n0�M� � 1:75� 1018 cm�3. The laser ampli-
tude is A � 0:071, and the beat wave detuning is �!l �

�0:025!p�M�. Figure 3(b) shows the generation of primar-
ily redshifted cascade. The linear estimate gives zC=	z �
1:7 under the simulation parameters. In effect, the com-
pression accompanies phase modulation, and the compres-
23500
sion rate, as follows from Fig. 3(a), is about an order of
magnitude in intensity.

In conclusion, we have demonstrated an approach for
generating trains of high-intensity femtosecond radiation
spikes via coherent EM cascading. Laser bandwidth broad-
ening comparable to the fundamental laser frequency can
be achieved for realistic experimental parameters. The
GVD of radiation in plasma can compress positively
chirped laser beat notes and thus create a train of few-
laser-cycle EM spikes with a fixed time separation. Our
method shows robustness against plasma nonlinearities
and unwanted parametric instabilities. We conjecture that
this technique could be used for compressing radiation
beams to petawatt power and for electron acceleration [10].
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