
PRL 94, 234502 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
17 JUNE 2005
Nonlinear Dynamics of a Flow-Focusing Bubble Generator: An Inverted Dripping Faucet
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We describe the rich dynamic behavior—including period-doubling and period-halving bifurcations,
intermittency, and chaos—observed in the breakup of an inviscid fluid in a coflowing, viscous liquid, both
confined in a microfabricated flow-focusing geometry. Experimental observations support inertia-
dominated dynamics of the interface, and suggest the possible similarity to the dynamics of a topologi-
cally inverted counterpart of this system, that is, a dripping faucet.
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This Letter describes rich nonlinear dynamics of bub-
bling in a microfluidic flow-focusing (FF) device [1–4].
We observe period doubling and halving bifurcations and
chaotic bubbling—characteristic features of a model non-
linear system [5–7]. The interesting finding is that, in
contrast to earlier work [8], our experimental observations
indicate a dynamic similarity to a system that forms the
topologically inverted version of our bubble generator—a
dripping faucet. In our system gas bubbles into a stream of
flowing liquid; in the faucet, liquid drips into ambient gas.

The formation of droplets and bubbles is important to
fluid dynamics in two classes of problems: the first deals
with interfacial instabilities, and details the asymptotics of
pinch off [9–12] of a single drop; the second tries to
understand the mechanisms behind the generation of se-
quences of drops or bubbles [5,13,14]. Systems as simple
as a leaky faucet [5,13–18], or a pressurized nozzle releas-
ing gas into a tank of fluid [6,8,19–22] provide archetypal
examples of nonlinear dynamics. The behavior of these
systems changes dramatically as a control parameter (typi-
cally the rate of flow of the fluid that is dispersed) increases
above a critical value, and one observes that a series of
identical droplets (or bubbles) is replaced by repeating
sequences of two, four, or, in general, a number of fluid
segments of different sizes. The bifurcations often lead to
chaotic behavior characterized by sequences of drops or
bubbles with seemingly random sizes. The studies of these
phenomena have both fundamental [23,24] and practical
[25] implications.

Helsby and Tuson were the first to observe higher-order
periodic and chaotic bubbling from a submerged nozzle
[6,26]; their observations were followed by more detailed
studies by Tritton and Egdell [19], and others [20,27], and
the subject is still of significant interest [21,22]. Reports on
bubbling from a nozzle describe period-2, period-3, and
period-4 attractors, and transitions to chaos—a behavior
similar to that of a dripping faucet [5,13,14,16–18]. The
study by Nguyen et al. [8] suggests, however, that the cause
of the instability in a system in which a nozzle injects a
train of bubbles into an ambient fluid (a system we refer to
as a ‘‘vertical nozzle’’) is different from the cause of
bifurcations in the dripping faucet. In the vertical nozzle,
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instability arises from the movement of bubbles to the top
of the fluid; in the faucet system the bifurcations are caused
by the dynamics of the oscillating tip [13,14]. As the
dynamics of a dripping faucet are well understood
[5,13,14,24], it is interesting to ask whether the inverted
system (i.e., bubble generator) shares the underlying inter-
play of forces and relaxation processes that leads to the
observed, nonlinear behavior.

The formation of bubbles and droplets in microsystems
[1,3,4,28–30] has applications in on-chip separation [31],
high-throughput screening [32], protein crystallization
[33], kinetic analysis [34], and materials synthesis [35].
A general question in these systems concerns the extent to
which the formation of drops can be controlled, as breakup
is, inherently, a nonlinear phenomenon. Understanding the
governing dynamics can help answer whether the nonline-
arities can be tamed to yield ideally uniform fluid elements
or whether they always introduce higher-order behavior or
chaotic responses. A practical goal is to understand the
range of parameters (such as the rates of flow, pressures,
and viscosities, but also geometry of the device) that
promote formation of monodisperse dispersions.

Figure 1(a) shows the FF device [4] that we used. We
delivered the fluids to the orifice via three inlet channels—
two flanking channels for the continuous fluid, and one
central channel for the gas. We used nitrogen and aqueous
solutions of glycerol: 0, 30, 58, 62, and 80% (w/w) of
viscosities 0.9, 2.5, 5.8, 10.8, 20, and 50 mPa s at 24 �C,
respectively [36]. We added 2% (w/w) Tween 20 surfactant
to all the solutions to stabilize the bubbles. Gas and liquid
form an interface at the junction of the three inlets, up-
stream of the orifice. Provided that the pressure (p) applied
to the gas stream [37] exceeds the pressure required to
force the continuous fluid through the outlet channel at the
imposed rate of flow (Q), the gaseous thread advances
through the orifice into the outlet channel, breaks, releases
a bubble, and retracts upstream. The process then repeats.

For a given, fixed value of p, as we gradually increase Q,
the system first produces monodisperse bubbles. As Q is
raised above a critical value QCR�p�, the breakup process
bifurcates and the system produces sequences of two bub-
bles of different sizes [38]: the thread advances into the
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FIG. 1. (a) An optical micrograph of the FF bubble generator
comprising a planar network of channels fabricated in poly(-
dimethylsiloxane) and having a uniform height of 25 �m. The
relevant dimensions are plotted in the figure—the width of the
inlet channel (win � 30 �m), the distance between the inlet
channel and the orifice (lin � 100 �m), the width of the orifice
(wor � 30 �m), and the length of the orifice (lor � 100 �m).
The original micrograph is shown in black; the gray lines extend
the contours of the walls. (b) Bifurcation diagram showing the
diameters of the bubbles as a function of the flow rate Q of the
liquid (� � 0:9 mPa s) for constant pressure (p � 76 kPa) of
gas. The first bifurcation occurs at Q � 1:06 �L=s. It is fol-
lowed by period halving at Q � 1:44 �L=s. At Q � 2:8 �L=s,
the first of a cascade of period-doubling bifurcations occurs. The
cascade leads to chaos which, upon further increase of Q, gives
way to a stable period-3 cycle. The solid line shows an outline of
the bifurcation diagram (not to scale). The letters mark the rates
of flow at which the micrographs of the period-1, period-2,
period-4, and period-3 bubbling are shown in insets (c) to (f),
respectively.
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orifice, breaks, releases the first bubble, retracts, advances
again, releases a second bubble of a different size, and the
sequence repeats. As we further elevate Q, we observe a
variety of nonlinear phenomena, including period doubling
and halving bifurcations, and chaos. Figure 1(b) illustrates
the sizes of the bubbles as a function of Q for a fixed p. As
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we increased Q, monodisperse bubbling gave away to a
period-2 cycle, the period then halved, and the system
again produced identical bubbles. At higher values of Q,
the system underwent two well demarcated period-
doubling bifurcations and a transition to chaotic bubbling.
Within the cascade, we observed period-2 and period-4
cycles. Period-8 orbits were unstable and hard to distin-
guish from the seemingly random bubbling. As we in-
creased Q even further, chaos intermittently gave way to
a stable period-3 behavior, which persisted up to the rate of
flow at which the pressure applied to the gas stream was no
longer sufficient to sustain the thread in the FF region.

In order to understand the dynamics of the system, we
scanned the two flow parameters (p and Q) for different
viscosities � of the liquid. Figure 2(a) presents the ‘‘phase
diagram’’ in the (p;Q) space for � � 0:9 mPa s. The
diagram distinguishes regions of monodisperse bubbling
from the zones in which the device produced bubbles of
more than one size. We want to identify the physical
quantity that controls this transition from period-1 to
higher-order behavior. If the origin of the bifurcation lies
in the dynamics of the gaseous thread, then frequency (f) is
a plausible candidate for the control parameter. In a first-
order approximation, f is proportional to the product of Q
and p [Fig. 2(b)]. We also note that the viscosity of the
continuous fluid does not affect the frequency appreciably
[Fig. 2(c)].

The frequency of the period-1 bubbling at the point of
the first bifurcation was always on the order of a few kHz:
for the water-surfactant mixture, the average frequency at
the first bifurcation is fCR � 5:6 kHz (with a standard
deviation of �f � 1:3 kHz). We therefore associate the
first bifurcation with a critical frequency of bubbling.
The phase diagram presented in Fig. 2(a) shows a solid
line (p / Q�1) that yields a critical frequency of fCR �
5 kHz according to the phenomenological scaling detailed
in Fig. 2(b). This line overlaps well with the boundary
between the period-1 and period-2 responses. Experiments
with more viscous (� � 2:5, 5.8, 10, 20, and 50 mPa s)
solutions exhibited ‘‘phase diagrams’’ similar to that for
� � 0:9 mPa s, and fCR does not change significantly with
the increase of viscosity: for the most viscous solution that
we used (� � 50 mPa s), fCR � 4 kHz, and �f �

0:5 kHz [Fig. 2(c)].
The origin of the bifurcations is not likely to lie in the

outflow of bubbles through the orifice and outlet channel.
The bubbles flow into an outlet channel that is significantly
wider (500 �m) than a typical diameter of the bubble (50
to 100 �m). We assume that once the bubble has traveled a
few hundred micrometers into the outlet, it can no longer
affect the flow within the orifice significantly. We observed
period-2 or higher-order periodic behavior, both when new
bubbles broke off when preceding ones were still within (or
close to) the orifice, and when they were already far down-
stream of the orifice. We therefore concentrate our analysis
on the evolution of the tip of the gaseous thread.
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FIG. 2. (a) Phase diagram of the dynamics of the bubble
generator in the p;Q space (� � 0:9 mPa s) 
, period-1 cycles,
and �, higher-order periodic or chaotic behavior. Below the
long-dashed diagonal line, p is insufficient to force the gaseous
thread through the orifice and no bubbling occurs. The horizon-
tal, short-dashed line indicates the cut through the phase diagram
(for p � 76 kPa) illustrated in Fig. 1(b). The solid line yields a
constant frequency, f � 5 KHz. (b) Frequency of bubbling
plotted against the product (pQ). Different symbols correspond
to different viscosities � of the liquid [values in (mPa s) given in
the legend]. The solid line shows the fit f � ��Qp��, with � �
53:3 and � � 1:04 (regression coefficient R � 0:94). (c) A log-
log plot of the critical capillary (
) and Weber (�) numbers as a
function of the Ohnesorge number.
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In order to determine the relative importance of the
inertial, viscous, and capillary stresses, we calculated the
capillary (Ca) and Weber (We) numbers. We distinguish
between the shear and the inertial stresses exerted on the
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interface by the flowing liquid, Caflow and Weflow, calcu-
lated on the basis of the mean speed of the liquid through
the orifice, and the shear and inertial stresses counteracting
the capillary pressure, Cainter andWeinter, calculated on the
basis of the frequency of bubbling and the typical length
scale for the evolution of the gas-liquid interface.

The Reynolds number (Re � �uL=�; � is the density of
the fluid, u its mean velocity, and L the typical length scale
taken as the height of the channels h � 25 �m) for the
externally imposed flow of liquid through the orifice ranges
from Re � 10�1 (Q � 0:1 �L=s and � � 50 mPa s) to
Re � 102 (Q � 10 �L=s and � � 0:9 mPa s), where we
used u � Q=worh (where wor is the width of the orifice) as
the typical speed of the liquid. This range of Re indicates
that both viscous and inertial effects play significant roles,
but we can expect laminar flow without turbulent effects.
The capillary (Caflow � u�=�, where � is the interfacial
tension [39]) and Weber (Weflow � �u2L=�) numbers
yield the ratio of the viscous and inertial to interfacial
stresses, respectively. Within the range of rates of flow
and viscosities that we tested, Caflow 2 �10�4; 10�2� for
� � 0:9 mPa s and Caflow 2 �10�2; 10�1� for � �
50 mPa s; the shear stress exerted by the liquid on the
interface has little influence on its shape. In contrast, the
Weber number covers a wide range of values: Weflow 2
�10�4; 102� and suggests a crossover from regimes domi-
nated by surface tension to those dominated by inertia.

After each breakup the thread recoils upstream of the
orifice; we want to assess how much this motion is retarded
by the viscous and inertial stresses. The typical speed of the
interface can be estimated as uinter � lorf, where lor is the
length of the orifice, and the characteristic length scale for
evolution of the tip during the recoil process is on the order
of wor. We use these estimates to calculate Cainter �
uinter�=� andWeinter � �uinter

2wor=�. We obtain Cainter <
10�2 for � � 0:9 mPa s, Cainter < 1 for � � 50 mPa s,
and Weinter 2 �10�4; 10�. These values suggest that capil-
lary pressure dominates viscous stresses, but inertial ef-
fects can play a significant role in the relaxation of the
interface after each breakup.

We now use uinterCR � lorfCR to estimate the critical
values of CainterCR and WeinterCR. For the critical capillary
number, we obtain a range of values from CainterCR 	 10�2

(for � � 0:9 mPa s) to CainterCR 	 1 (� � 50 mPa s). In
contrast, WeinterCR is always on the order of 0.1; it de-
creases only slowly with increasing viscosity of the con-
tinuous fluid: WeinterCR 	 0:3 (� � 0:9 mPa s) to
WeinterCR 	 0:15 (� � 50 mPa s) [Fig. 2(c)]. These esti-
mates suggest that only the inertial effects can be consis-
tently associated with the bifurcation of the bubbling
process. We note here that WeCR 	 0:1 is very similar to
the values obtained for a dripping faucet [5].

The rich dynamic behavior of the FF bubble generator
adds to the various nonlinear phenomena observed in the
evolution of bubbles [40]. The dimensional analysis sug-
gests that the inertial terms govern the dynamics of the tip
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of the thread, and lead to the higher-order periodic and
chaotic behavior. This conclusion raises the interesting
question of analogy between two topologically inverted
systems—a gaseous thread breaking in a flowing host fluid
and a liquid dripping into an ambient atmosphere of gas.
Microfluidics offer a convenient technique for probing the
impact of geometrical confinement on the dynamics of
breakup, and allow the experimenter to either exclude or
include gravity among the forces influencing the dynamics
of the system. The finding that the bifurcations are caused
by inertial effects suggests that promotion of monodisperse
bubbling can be achieved by a reduction of the size of the
FF region (widths win, wor, and lengths lin, lor, as defined in
Fig. 1(a)]. Smaller typical length scales for the relaxation
of the gaseous thread should result in larger critical fre-
quencies of bubbling. Interestingly, the range of Reynolds
and Weber numbers for which we observe this highly
nonlinear dynamics is intermediate in the ranges reported
for controlled formation of monodisperse bubbles in vis-
cosity [4,41] and inertia [1,2] dominated regimes.
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