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Shadow Effects in Spiral Phase Contrast Microscopy
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Recently it has been demonstrated that spatial filtering of images in microscopy with a spiral phase
element in a Fourier plane of the optical path results in a strong edge enhancement of object structures. In
principle the operation is isotropic, i.e., all phase edges of a sample object are highlighted simultaneously,
independent of their local direction. However, here we demonstrate that the symmetry can be broken
intentionally by controlling the phase of the central area of a spiral phase hologram, which is displayed at
a computer controlled spatial light modulator. This produces an apparent shadow effect which can be
rotated at video rate. The resulting relieflike impression of the sample topography with a longitudinal
resolution in the subwavelength regime is demonstrated by imaging a standard low contrast test sample

consisting of a human cheek cell.
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In a few recent articles, it has been suggested that
coherent spatial image filtering with a spiral phase element
leads to a strong edge contrast enhancement of both am-
plitude [1-3] and phase objects [4]. The method is related
to other spatial filtering operations used in microscopy:
Dark-field and Dodt microscopy [5] use Fourier filters
which are partially absorptive, and thus lose some image
intensity. Phase contrast microscopy shifts the phase of the
zero-order Fourier component of the object wave, imaging
a phase sample as an intensity modulated picture. In con-
trast, spiral phase filtering is not sensitive to the absolute
phase of a sample, but to phase gradients, which are
strongly amplified by redistribution of the image intensity.
This is similar to the established Nomarski (or differential
interference contrast) method, however without the need to
manipulate the polarization of the image wave. Spiral
phase filtering differs from earlier reported fractional
Hilbert transform filtering [6] by the rotational symmetry
of the phase filter mask, resulting in an isotropic filter
effect, i.e., all edges of a sample object are highlighted
simultaneously, independent of their local direction.

However, here we will demonstrate that for some appli-
cations it can be advantageous to break the circular sym-
metry of the ‘““ideal” spiral phase operation, creating an
oriented shadow effect. This is done by manipulating the
phase of the zero-order Fourier component of the image
wave in another way than the remaining light. The direc-
tion of the shadow can be continuously controlled through
the phase of the central area, and it differs by 90° when
imaging objects with phase- or amplitude contrast. This
results in strongly edge-enhanced relieflike views of micro-
scopic samples, which allow us to identify the sample
topography with subwavelength axial resolution.

Consider a spiral phase element that applies an angular-
dependent phase shift of the form exp(i¢) to the wave front
of an incoming light wave, either by transmission through
(or reflection from) a correspondingly shaped refractive
index plate, or in our case, by diffraction from a corre-
sponding hologram [7]. There, ¢ is the polar angle mea-
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sured from the center of the spiral phase element. Such
spiral phase elements are, for example, used to create
Laguerre-Gaussian beams (“‘doughnut beams’”) from an
incoming Gaussian light wave. Such a spiral phase element
has a singularity in its center, i.e., there the phase is not
defined. However, the singularity is usually not important
for practical purposes. For example, it does not influence
the creation of a doughnut beam from an incoming
Gaussian (or “plane’”) wave, since only a negligible frac-
tion of the total light intensity is located at the central point.

The situation is changed, however, if such a spiral phase
element is used as a spatial filter for Fourier plane filtering
of an incoming, image carrying light wave. The reason is
that the zero-order Fourier spot of the incoming light field
(also denoted as the carrier wave) contains most of the total
intensity of the image wave and focuses at the central point
of the spiral phase element. Obviously, it now makes a
strong difference for the reassembled light field in the
image plane, whether this central spot is absorptive, or
whether it acts as a phase shifter.

A numerical simulation illustrating these effects is
sketched in Fig. 1. Image 1(a) visualizes a simulated com-
plex sample surface, consisting of refractive and absorptive

FIG. 1 (color online). Simulation of a combination of ampli-
tude and phase objects imaged by a spiral phase contrast filter.
(a) shows the “sample object’” to be imaged as a relief. (b) shows
the numerically computed result for spatial filtering of the image
wave with an ideal spiral phase element with a singular central
point which is absorptive. (c) shows the result after filtering with
a spiral phase element with a transmissive center, resulting in a
relieflike view of the sample.
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regions, by displaying the real part of the transmission
function as a relief. The two intersecting spheres in the
upper part are simulated phase objects, whereas the struc-
ture in the lower left corner is an amplitude object. The
phase contrast between the right sphere and its background
is set to 0.04 X 27r, corresponding to an optical path length
difference of 4% of a wavelength. The amplitude contrast
between the sphere in the lower left edge, and the elliptic
pit in its surface is set to 20%. Image 1(b) shows the result
of a numerically performed spatial filtering operation of
the image wave with a ““perfect’ spiral phase element with
a single absorptive pixel in its center. The computation was
performed by applying a fast Fourier transform to the
complex image field, then multiplying pixel by pixel
with a complex spiral transmission function of the form
exp(ig), followed by a reverse Fourier transform to the
image plane, where the image intensity (squared absolute
value) is displayed. The same sequence of operations is
performed by the optical elements in our experiment by a
first Fourier transforming lens for the image wave, then a
spiral phase mask in its Fourier plane, and a back-
transforming lens at a focal distance. As a result, the
filtered image 1(b) shows a strong and isotropic edge
amplification, displaying, for example, longitudinal phase
jumps in the far subwavelength regime [4].

Image 1(c) shows the result of an analogous spatial
filtering operation, however now with a transmissive cen-
tral pixel of the spiral phase element. The image clearly
displays the topography of the sample, e.g., troughs and
ridges in the phase structures are distinguished by an
apparent shadow effect. Furthermore, there is a 90° differ-
ence in the orientation of the shadow between the phase
structures (upper intersecting spheres) and the amplitude
structure in the lower left corner, which seem to be ““illu-
minated’’ from the right side and from above, respectively.
This allows us to distinguish between objects with ampli-
tude and phase contrast.

The effects can be understood by examining an ideal
two-dimensional spiral phase filter in a polar coordinate
system (with radial and angular coordinates of r and ¢,
respectively), and considering it as composed of an infinite
number of radially proceeding one-dimensional Fourier
filters at continuously changing polar angles, i.e., each
single Fourier filter consists of a straight line passing
through the center of the spiral phase plate. Each of these
one-dimensional filters controls the appearance of the two-
dimensional image structures in a direction perpendicular
to its course. Regarding one individual ““filter ray”” with the
direction ¢, the corresponding transmission function 7'(x)
consists of a signum function [defined as sgn(x) = 1 for
x> 1, sgn(x) = —1 for x < 1, and sgn(x) = 0 for x = 0],
multiplied by a phase factor corresponding to the polar
angle ¢, i.e., T(x) = sgn(x) exp(i¢). There, x is the coor-
dinate along a diagonal line in the direction ¢, with x = 0
denoting the center of the spiral phase plate. Note that
T(0) = 0, i.e., the central point at x = 0 has zero trans-
mission. Using such a function as a one-dimensional spa-

tial filter produces the so-called Hilbert transform of the
original function [2,6,8].

The one-dimensional Hilbert transform of a function
looks similar to its derivative, i.e., it strongly amplifies
sharp gradients (or steps) of the original function.
Furthermore, the Hilbert transform changes the symmetry
of a function, i.e., the amplitudes of up- and down-directed
steps get a different sign. However, the absolute values of
these amplitudes are still the same, such that up- and down-
directed steps are not distinguished in imaging applica-
tions. Generalized to the two-dimensional case, this situ-
ation applies to the isotropic edge contrast enhancement of
ideal spiral phase filtering [2,4].

Nevertheless, it is possible to reveal the sign of the field
amplitude in the intensity distribution of the filtered func-
tion by superposing it interferometrically with a plane
wave. Such a plane wave is ‘“automatically’’ generated
from the zero-order Fourier spot of the original image
wave, if it is not absorbed in the center of the filter mask,
but just phase shifted by an adjustable phase offset 6. This
single central spot in the Fourier plane evolves to a plane
wave in the image plane, which interferes with the complex
amplitude distribution generated by the Hilbert transform.
The resulting superposition is determined by the interfer-
ence term exp[i(¢ — 0)] and leads to a continuously ad-
justable amplification or attenuation of positive or negative
field amplitudes which correspond to the edges of troughs
and ridges within the sample.

Returning to the two-dimensional spiral transform, the
asymmetry of the shadow effect results from the fact that
the interference term exp[i(¢ — 6)], which determines the
direction in which the edge amplification effect is maxi-
mally asymmetric, depends on ¢ itself. Such an edge
contrast, which is a function of the polar direction ¢,
creates the impression of a shadow at a structured surface
which is illuminated from an oblique direction.

The same reasoning also predicts the appearance of a
ar/2-phase shift in the shadow directions of amplitude and
phase samples. This is due to the fact that the difference
between image waves with amplitude and phase contrast
also consists in a 77/2 relative phase offset between their
respective zero-order Fourier components and their higher
order Fourier terms [9]. This 77/2 offset contributes to their
respective 6 values within the interference term exp[i(¢ —
0)], and results in a corresponding 77/2 difference in their
respective shadow orientations.

Our experimental setup is sketched in Fig. 2. The sample
object to be imaged is placed in the object plane of a
standard inverted microscope (Zeiss Axiovert 135) and is
illuminated in transmission geometry from above with a
collimated white light beam emerging from a fiber (diame-
ter Dy = 400 wm). A microscope objective (magnifica-
tion 60x, numerical aperture NA = 1.25) is used for
imaging. Spatial filtering of the imaging light wave is
done in a Fourier plane of the setup. A relay system
consisting of a set of two lenses images the rear Fourier
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plane of the microscope objective to another plane outside
of the microscope. The exact position of the Fourier plane
is determined by the focus of the illumination light. There,
a reflective spatial light modulator (Holoeye 3000 system,
resolution 1920 X 1200 square pixels with a pixel size of
10 wm [10]) is placed, which can display blazed phase
holograms. For ideal spiral phase filtering, a hologram is
displayed which has a forklike helical discontinuity in its
center [see image (a)], which coincides with the focused
zero-order Fourier spot of the imaging light wave. The
incident light wave is diffracted with an absolute diffrac-
tion efficiency of approximately 30%, and only the light in
the first diffraction order is used for further imaging, after
blocking undesired other diffraction orders with a dia-
phragm (not indicated in the figure). Imaging is then
performed with a third lens located symmetrically (at a
focal distance) between the spatial light modulator (SLM)
and a CCD camera.

In order to produce the modified spiral phase filter which
generates the desired shadow effect, the central part of the
hologram [1(a)] is substituted by a circular area which just
acts as a blazed grating, diffracting the incident light into
the same direction as the spiral phase hologram [see
Fig. 2(b), not to scale]. The phase of the inner blazed
grating controls the phase of the diffracted zero-order
Fourier component of the incident light field, and thus
the interference angle # mentioned before. A continuous
phase shift of this inner grating in a range between 0 and
27 results in a rotation of the apparent shadow direction by
360°. In the numerical simulations the zero-order Fourier
component of the image wave is defined by one single
pixel in the center of the calculated pixel array, and there-
fore its relative “‘area’” with respect to the remaining image
depends on the digital image resolution. For practical
purposes however, the diameter D of the zero-order
Fourier component in the SLM plane corresponds to the
diameter of the sharply imaged illumination fiber output.
Thus, D is given by the optical parameters of the setup:
D = Dymf/f., where f, =80 mm is the focal length
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FIG. 2 (color online).
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of the fiber collimation lens, f,; = 19 mm is the rear focal
length of the microscope objective, and m = 2 is a mag-
nification factor introduced by the relay-lens system. In our
case we obtain D = 190 um. Practically, the optimal di-
ameter of the inner grating is found by experimentally
adjusting it for a maximal shadow contrast.

The holograms are computed by first calculating the
phase profile of a standard spiral phase plate
(~ exp(ig)), then attaching a certain phase value 0 to a
small circular area A(x, y) in the center of the phase mask
[i.e., A(x, y) = exp(i#)], and finally multiplying with an
inclined plane phase term of the form exp(iG,x + iG,y) in
order to produce a blazed off-axis hologram diffracting

into a direction G. The phase angle of the result of the
above operations is computed (modulo 277) and displayed
as a phase hologram at the SLM, i.e., gray levels are
converted to phase offsets by the display.

An example is shown in Fig. 3. The figure displays a
sequence of five images taken from a test sample with a
very low phase contrast, i.e., a human cheek cell.
Figure 3(a) shows a bright-field image of the sample
obtained by using the SLM as a simple blazed grating.
Obviously, the cheek cell cannot be recognized.
Figures 3(b) and 3(c) show two exposures of the cheek
cell obtained by filtering with a symmetry-breaking spiral
phase hologram [Fig. 2(b)]. The difference between 3(b)
and 3(c) is that the phase of the central grating is shifted by
m, resulting in two images where the apparent shadow
directions seem to be opposed. The filtered images re-
semble a relieflike surface structure, which is illuminated
from an oblique direction. The two images reveal details of
the cheek cell, like its core (central elliptic structure) and
small bacteria at the cell membrane. In the experiment it
was possible to rotate the shadow direction by continu-
ously changing the displayed hologram. This gives the
impression of a sample that is illuminated by a circling
spotlight, which is useful for clearly identifying the whole
silhouette of the imaged object. Furthermore, this suggests

Nllumination-fiber

P —
Sample

stage .

Relay lenses

-

-

0

~-

0

Objective]

Allirror

Microscope

Sketch of our experimental setup. Details are explained in the text.
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FIG. 3 (color online).

Imaging of a human cheek cell. The image diameter is ~50 wm. (a) Bright-field image. (b) Resulting image

after spatial filtering of the original image wave with the symmetry-breaking spiral phase hologram shown in Fig. 2(b). (c) Same spiral-
filtering method as in (b), however, the phase of the central blazed grating is offset by 7. (d) Absolute value of the complex image
composed of 12 shadow effect images recorded with a phase offset of 277/12 from exposure to exposure. (¢) Two-dimensional Hilbert
back transform applied to image (d), looking similar as phase contrast microscopy, however with enhanced resolution.

a subsequent digital image processing step: Fig. 3(d) shows
the absolute value of a complex image, obtained by sum-
ming 12 individual shadow effect images with continu-
ously changing shadow directions in a range between 0 and
27, i.e., recorded with a phase offset of the central grating
of 30° from exposure to exposure. Each individual image n
was then multiplied with its corresponding complex phase
factor exp(i27rn/12) before the summation over all images
was performed. The operation results in an image with an
apparently isotropic edge amplification, removing any un-
modulated structures in the image which are not influenced
by the interference phase term. However, the phase-angle
data of the resulting complex image still includes the
orientational information contained in the individual
shadow effect images. This makes it possible to further
process the complex image [3(d)] by applying a reverse
two-dimensional Hilbert transform, i.e., a convolution of
the image data with exp[ —i¢(x, y)]. The absolute value of
the result of this operation is plotted in Fig. 3(e). It shows
an image of the test sample which displays the different
phase levels with intensity contrast, similar to phase con-
trast microscopy, however with a strongly enhanced phase
resolution, and an efficient background suppression due to
the coherent averaging operation. Compared to a Nomarski
system, the method is expected to have a superior resolu-
tion, and the advantage that the gradient contrast direction
can be changed continuously without any mechanical ma-
nipulation, and without the requirement of polarization
control.

The modification of spiral phase contrast microscopy by
combining it with a symmetry-breaking central phase
shifter for the zero-order Fourier component has a signifi-
cant potential in optical microscopy. It produces a relieflike
view of the sample topography with a longitudinal sub-
wavelength resolution and can be easily implemented into
the optical path of standard microscopes. In principle the
method can be performed with a static spiral phase element
like a wave plate or a static hologram, however, combining
it with an electronically controllable SLM offers the addi-
tional possibility of rotating the shadow without any me-
chanically moving components. Interestingly the method

emanates from a recently introduced generalization of the
one-dimensional Hilbert transform to two dimensions,
which was first suggested as a mathematical operation in
digital imaging processing applications [11-13], but which
is here directly implemented as an optical method. Because
of the sensitivity of the Hilbert operation to phase gra-
dients, this kind of microscopy is optimal for the detection
of crystal dislocations (e.g., in semiconductors), or for
microscopic imaging of biological samples with a low
phase contrast.
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