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Nuclear Time-Reversal Violation and the Schiff Moment of 225Ra
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We present a comprehensive mean-field calculation of the Schiff moment of the nucleus 225Ra, the
quantity that determines the static electric-dipole moment of the corresponding atom if time-reversal (T)
invariance is violated in the nucleus. The calculation breaks all possible intrinsic symmetries of the
nuclear mean field and includes, in particular, both exchange and direct terms from the full finite-range
T-violating nucleon-nucleon interaction, and the effects of short-range correlations. The resulting Schiff
moment, which depends on three unknown T-violating pion-nucleon coupling constants, is much larger
than in 199Hg, the isotope with the best current experimental limit on its atomic electric-dipole moment.
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The standard model of particle physics violates time-
reversal (T) invariance, but apparently only through a
single phase in the Cabibbo-Kobayashi-Maskawa matrix
that mixes quark flavors. The resulting T violation in
flavor-conserving observables is therefore very weak, and
static electric-dipole moments (EDMs) of neutrons, elec-
trons, or atoms, all of which are nonzero if T is violated,
have never been observed. Standard-model T violation is
also too weak to account for the baryon asymmetry of the
universe, which must come from as yet undiscovered
physics. Happily, most theories of what lies beyond the
standard model contain enough phases that flavor-
conserving T violation will be unsuppressed. Current lev-
els of sensitivity in EDM experiments are already sufficient
to rule out or pressure many extrastandard models, and it
seems quite possible that with slightly improved sensitiv-
ity, new T-violating physics will be discovered.

Some of the tightest constraints on T violation come
from atomic EDM experiments. The best of these at
present is an experiment [1] with 199Hg, but it has become
clear recently [2–4] that atoms with octupole-deformed
nuclei are potentially more sensitive than Hg. The primary
reason is that given any T violation in the nucleon-nucleon
interaction, an asymmetric nuclear shape and an associated
parity doubling create a collective nuclear ‘‘Schiff’’ mo-
ment, a kind of radially weighted dipole moment (see
below). (Earlier papers on T violation in polar diatomic
molecules [5] and parity violation in fission [6] were the
first to consider the effects of asymmetric shapes on fun-
damental symmetries. Reference [7] drew early attention
to the importance for EDMs of low-lying nuclear states
with the same angular momentum as the ground state but
opposite parity.) Because of screening by atomic electrons,
the Schiff moment, rather than the nuclear EDM, is the
quantity that directly induces an atomic EDM (at least in
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lowest order; see Ref. [8]). In nuclei with symmetric
shapes, a collective contribution to the Schiff moment
develops only in fluctuations around that shape [4,9].

In this Letter we calculate the Schiff moment of 225Ra,
or more precisely its dependence on any T-violating �NN
couplings, in a mean-field theory that allows us to break all
possible symmetries, consider a variety of phenomenolog-
ically successful strong (Skyrme) interactions, implicitly
include the RPA polarization of the even-even core by the
valence neutron, treat both the direct and exchange parts of
the full pion-mediated interaction responsible for creating
the Schiff moment, and include short-range two-body cor-
relations between nucleons that modify the effects of this
T-violating interaction. Though further refinements are
possible, they will probably have to include correlations
beyond mean-field theory and/or careful and systematic
work on Skyrme functionals; the results presented here will
not be easy to supersede.

Simpler calculations of Schiff moments have been at-
tempted before. Reference [10] applied an independent-
particle model in 199Hg, 129Xe, and other symmetrically
deformed or spherical isotopes. References [11,12] carried
out a much more sophisticated RPA-based calculation in
199Hg; its main drawback was the use of a single phenome-
nological interaction that made it difficult to estimate
uncertainty. Reference [3] made estimates in a particle-
rotor model of the enhancement due to octupole deforma-
tion, and in Ref. [13], together with Bender, de Jesus, and
Olbratowski, we applied a preliminary version of our
technique to 225Ra, an experiment on which is in the works
[14]. That paper, however, assumed the range of the
T-violating interaction to be zero, an especially bad ap-
proximation for exchange matrix elements, and was unable
(obviously) to examine the effects of short-range NN
correlations.
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We briefly review some definitions and ideas. The Schiff
moment is given accurately by the first-order expression

S � h�0jŜzj�0i �
X
i�0

h�0jŜzj�iih�ijV̂PTj�0i

E0 � Ei
� c:c:;

(1)

where j�0i is the member of the ground-state multiplet
with Jz � J � 1=2 (positive parity), the sum is over ex-
FIG. 1 (color online). Shape of the microscopically calculated
[13] mass distribution in 225Ra, represented here by the surface
of a uniform body that has the same multipole moments Q�0 for
� � 0; . . . ; 4 as our calculated density.
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cited states, and Ŝz is the operator
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with the sum here over protons, and �r2ch the mean-square
charge radius. The operator V̂PT in Eq. (1) is the T- (and
parity-) violating nucleon-nucleon interaction mediated by
the pion [7,15]:
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where arrows denote isovector operators, �z is �1 for
neutrons, mN is the nucleon mass, and (in this equation
only) we use the convention �h � c � 1. The �g’s are the
unknown isoscalar, isovector, and isotensor T-violating
pion-nucleon coupling constants, and g is the usual strong
�NN coupling constant.

The asymmetric shape of 225Ra implies parity doubling
(see, e.g., Ref. [16]), i.e., the existence of a very low-
energy j1=2�i state, in this case 55 keV [17] above the
ground state j�0i � j1=2�i, that dominates the sum in
Eq. (1) because of the corresponding small denominator.
With the approximation that the shape deformation is rigid,
the ground state and its negative-parity partner in the
octupole-deformed nucleus are projections onto good par-
ity and angular momentum of the same ‘‘intrinsic state’’
(see Fig. 1), which represents the wave function of the
nucleus in its own body-fixed frame with the total angular
momentum aligned along the symmetry axis. Equation (1)
then reduces to [3]
S � �
2

3
hŜzi

hV̂PTi
�55 keV	

; (4)

where the brackets indicate expectation values in the in-
trinsic state. Using Eq. (3) for V̂PT, we can express the
dependence of the Schiff moment on the undetermined
T-violating �NN vertices as

S � a0g �g0 � a1g �g1 � a2g �g2: (5)

The coefficients ai, which are the result of the calculation,
have units e fm3.

The octupole deformation enhances hŜzi, the first factor
in Eq. (4), making it collective, robust, and straightforward
to calculate with an error of a factor of 2 or less. The
interaction expectation value hV̂PTi is harder to estimate
because it is sensitive to the nuclear spin distribution,
which depends on delicate correlations near the Fermi
surface. Our calculation allows the breaking of Kramers
degeneracy in the intrinsic frame and, consequently, spin
polarization.

To evaluate hV̂PTi we constructed a new version of the
code HFODD (v2.14 e) [18,19]. The code uses a triaxial
harmonic-oscillator basis and Gaussian integration to solve
self-consistent mean-field equations for zero-range
Skyrme interactions. Evaluating matrix elements of the
finite-range interaction (3) is much harder numerically,
but efficient techniques have already been developed [20]
for Gaussian interactions, which are separable in three
Cartesian directions. The spatial dependence in Eq. (3) is
different, the derivative of a Yukawa function, and we also
include short-range correlations between nucleons (which
the mean field does not capture) by multiplying the inter-
action by the square of a correlation function [21] that cuts
off the two-nucleon wave functions below a relative dis-
tance of about a Fermi:

f�r	 � 1� e�1:1r
2
�1� 0:68r2	; (6)

with r � jr1 � r2j in Fermis and the coefficients of r2 in
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fm�2. The resulting product looks very different from a
Gaussian, but we were able to reproduce it quite accurately
(see Fig. 2) with the sum of four Gaussians:

g�r	 � f�r	2
e�a�r

r2

�
1�

1

a�r

�

� 1:75e�1:1r
2
� 0:53e�0:68r

2
� 0:11e�0:21r

2

� 0:004e�0:06r
2
; (7)

where a� � 0:7045 fm�1 is the pion mass in inverse
Fermis and the numbers in the fit all have units fm�2.
The extra factor of r not included in Eq. (7) [i.e., the factor
r1 � r2 in Eq. (3)] is treated separately.

HFODD works with any Skyrme energy functional. In the
context of the present study the best is SkO0 [22,23]. The
‘‘time-even’’ terms in this interaction, which act in even-
nucleus ground states, were fit with special attention to
nuclei around 208Pb and to spin-orbit splitting. The ‘‘time-
odd’’ terms responsible for core polarization in an odd
nucleus were adjusted in Ref. [23] to reproduce Gamow-
Teller resonances, resulting in an effective Landau parame-
ter g00 � 1:2. (The isoscalar parameter was set to g0 � 0:4,
following common practice.) For comparison, we also
carry out the calculation with the older parametrizations
SIII, SkM
, and SLy4 (with time-odd terms that are not
fixed by gauge invariance neglected, and then again, with
the simplest time-odd terms modified so that the Landau
parameters have the same values as in SkO0) but have the
most confidence in SkO0. Reference [13] presented predic-
tions by these functionals for the binding energies, separa-
tion energies, intrinsic dipole moments, and spin-orbit
splittings in the even Ra isotopes. SkO0 and SIII seemed
to do the best job.
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FIG. 2 (color online). The function g�r	 in Eq. (7) multiplied
by r3 (solid line), the Gaussian fit multiplied by r3 (dashed line),
and r3g�r	=f�r	2, the radial T-odd interaction without short-
range correlations (dot-dashed line). The factor r3 is to account
for the volume element and the additional factor of r � r1 � r2
in Eq. (3).
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Table I shows the calculated values, with SkO0, of the
three coefficients ai at several levels of approximation. The
finite range reduces the direct matrix elements of the
interaction (and the corresponding ai) from the zero-range
limit [13] significantly. The exchange terms are reduced
much more, so that they are always smaller than the direct
terms. The effects of the short-range correlations, which
also reduce the coefficients, are relatively small as well but
non-negligible. Finally, as pointed out in Ref. [8], relativ-
istic effects in electron wave functions correct the effects of
the Schiff moment; the authors summarize the corrections
in a quantity they call the ‘‘local nuclear dipole moment.’’
Our local dipole moment in 225Ra is 82% of the Schiff
moment for the s1=2-p1=2 atomic transition and 87% for the
s1=2-p3=2 transition.

The coefficients produced by the forces we favor less,
with the time-odd terms adjusted as mentioned above, are
presented in Table II; SIII produces numbers similar to
those of SkO0, while the other two forces give numbers that
are larger by factors of 2 or 3, whether or not the Landau
parameters are adjusted (i.e., the effects of adjusting those
parameters seem to be fairly small).

What is the uncertainty in our numbers? The mean field
omits correlations that could have some effect on the
result; those could be explored by refining the calculation
through angular momentum and parity projection, i.e., the
restoration of symmetries broken by the mean field. In
addition, an optimal Skyrme functional has yet to be
identified. Those we tested give results that differ from
the SkO0 numbers by factors of 2 or 3, as mentioned above.
But some low-order terms in the T-odd part of the Skyrme
functional are never used even in SkO0, because they have
never been fit. Reference [23] constrained some combina-
tions of those terms, but others were set to zero for lack of
sufficient Gamow-Teller data in spherical nuclei. One
might imagine trying to fit in deformed nuclei, or looking
at spin-strength distributions with different total angular
momentum and parity; the 0� channel would be particu-
larly useful because those are the quantum numbers of V̂PT.
At the same time, it would probably help to explicitly study
the sensitivity of the Schiff moments to changes in the
various Skyrme parameters, both in the time-odd and time-
even sectors. With enough work on all these fronts, we
TABLE I. Coefficients of g �gi, in units of e fm3, in the expres-
sion Eq. (5) for the Schiff moment of 225Ra, calculated with the
SkO0 Skyrme interaction. The abbreviation ‘‘src’’ stands for ‘‘-
short-range correlations.’’

a0 a1 a2

Zero range (direct only) �5:1 10.4 �10:1
Finite range (direct only) �1:9 6.3 �3:8
Finite range � src (direct only) �1:7 6.0 �3:5

Finite range � src (direct+exchange) �1:5 6.0 �4:0
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TABLE II. Same as the last line in Table I but for the SIII,
SkM
, and SLy4 interactions.

a0 a1 a2

SIII �1:0 7.0 �3:9
SkM
 �4:7 21.5 �11:0
SLy4 �3:0 16.9 �8:8
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could give a firmer estimate of the uncertainty than our
current guess: a factor of 2 or 3.

If we accept our current results as reasonably accurate,
we are in a position to quantify the advantages of 225Ra for
an EDM measurement. The recent RPA calculation [11,12]
of the ai for 199Hg gives

199Hg : a0 � 0:0004; a1 � 0:055; a2 � 0:009:

(8)

Our numbers are more than 2 orders of magnitude larger,
particularly in the isoscalar channel (the relevant channel if
T violation is caused by a nonzero QCD parameter ��),
where the Hg number is anomalously small. Atomic phys-
ics enhances any EDM in Ra by another factor of 3 over
that in Hg [24], so if the Ra EDM can be measured even
1=100th as accurately as that of Hg, the sensitivity to
nuclear T violation will be significantly greater.

In conclusion, we have evaluated the Schiff moment of
225Ra in a completely symmetry-breaking mean-field ap-
proach, including, in particular, the finite-range matrix
elements of the T violating nucleon-nucleon interaction.
The results indicate that EDM experiments in this system
are very promising. The remaining uncertainty of a factor
of 2 or 3 is related primarily to deficiencies in nuclear
effective interactions, which can be removed but not easily.
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