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Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number of
hadronic parameters in an isospin analysis of B ! �� decays by one. This gives a theoretically precise
method for determining the CP violating phase � by fitting to the B ! �� data without C�0�0 . SCET
predicts that � lies close to the isospin bounds. With the current world averages we find � � 75� �
2

��9�
�13� , where the uncertainties are theoretical, then experimental.
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Measurements of CP violation are an important tool to
look for physics beyond the standard model (SM) [1].
Standard model measurements of CP violation in B decays
are usually expressed in terms of the angles �, �, and �. To
test the SM picture of CP violation, one looks for incon-
sistencies by making measurements in as many decay
channels as possible.

Important observables for measuring � (or �) are the CP
asymmetries and branching fractions in B ! �� decays.
Unfortunately, hadronic uncertainties and ‘‘penguin pollu-
tion’’ make the data difficult to interpret. Gronau and
London (GL) [2] have shown that using isospin, Br� 
B !
�����, Br�B� ! ���0�, Br� 
B ! �0�0�, and the CP
asymmetries C����, S����, C�0�0 , one can eliminate
the hadronic uncertainty and determine �. This year
BABAR and Belle Collaborations [3] reported the first
observation of C�0�0 . Unfortunately, the uncertainties in
C�0�0 and Br�B ! �0�0� are still too large to give strong
constraints, leaving a fourfold discrete ambiguity and a
�29� window of uncertainty in � (at 1	) near the SM
preferred value.

In this Letter we observe that the soft-collinear effective
theory (SCET) [4] predicts that one hadronic parameter
vanishes at leading order in a power expansion in
�QCD=E�, and that this provides a robust new method
for determining � using the experimental value of �. The
parameter is � � Im�C=T�, where T and C are defined
below and are predominantly ‘‘tree’’ and ‘‘color sup-
pressed tree’’ amplitudes. From [5] we know that � van-

ishes to all orders in �s�
������������������
E��QCD

q
� since the ‘‘jet

function’’ does not involve a strong phase, and so � re-
ceives corrections suppressed by �QCD=E� or �s�mb�. Our
method does not rely on a power expansion for any of the
other isospin parameters. Thus, issues like the size of
charm penguin diagrams and whether ‘‘hard-scattering’’
or ‘‘soft’’ contributions dominate the B ! � form factors
[5–11] are irrelevant here. Our results are sufficiently
robust to allow for the so-called ‘‘chirally enhanced’’
power corrections [7]. The method differs from the QCD
05=94(23)=231802(4)$23.00 23180
factorization (QCDF) [7] and perturbative QCD [11]
analyses; for example, we work to all orders in �QCD=mb

for most quantities and do not use QCD sum rule inputs.
The world averages for the CP averaged branching

ratios (Br) and the CP asymmetries are [3,12]
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For later convenience we define the ratios


Rc �
Br�B0 ! ������B�

2Br�B� ! �0����B0

� 0:446� 0:064;


Rn �
Br�B0 ! �0�0��B�

Br�B� ! �0����B0

� 0:293� 0:064;

(1)

and quote the product 
RnC�0�0 � 0:082� 0:116.
To obtain general expressions for these observables, we

use isospin and unitarity of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix to write

A� 
B0 ! ����� � e�i�j�ujT � j�cjP

� �e�i�j�uj � j�cj�P
1
ew;

A� 
B0 ! �0�0� � e�i�j�ujC� j�cjP

� �e�i�j�uj � j�cj��P
2
ew � P1

ew�;���
2

p
A�B� ! �0��� � e�i�j�uj�T � C�

� �e�i�j�uj � j�cj�P2
ew: (2)

Here �u � VubV�
ud, �c � VcbV�

cd. The CP conjugate am-
plitudes are obtained from (2) with � ! ��. T, C, P, and
the electroweak penguin amplitudes P1;2

ew are complex.
The amplitude Pew

2 is related to T and C by isospin [13].
An additional relation for Pew

1 can be obtained using SCET
at lowest order in �=E� and �s�mb� [5]. For the numeri-
cally dominant coefficients C9;10 we find
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FIG. 1. (a) Isospin triangle in the j�uj sector, and (b) the re-
scaled triangle with solutions for positive and negative � shown.
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FIG. 2 (color online). Isospin analysis showing the hadronic
parameters fpc; ps; tc; �g versus � using current central values of
the B ! �� data. Solutions for � occur at crossings of the �i
curves. Experimental uncertainties are not shown, and are espe-
cially large for �3;4. This plot shows only one of two allowed
(pc, ps) solutions and one of the two allowed � regions.
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P1
ew � e1T � e2C; P2

ew � e3T � e4C;

e1 �
C10�C1 � C3� � C9�C4 � C2�

�C1 � C2��C1 � C2 � C3 � C4�
� �9:5	 10�5;

e2 �
C9�C1 � C4� � C10�C2 � C3�

�C1 � C2��C1 � C2 � C3 � C4�
� �9:0	 10�3;

e3 � e4 �
3

2
�C9 � C10��C1 � C2�

�1 � �1:4	 10�2;

(3)

with Ci from the electroweak Hamiltonian. Since
e3jTj=jPj � e3�p2

s � p2
c�

�1=2j�cj=j�uj 
 0:06 for typical
values of the parameters ps and pc (from below), we
estimate that the electroweak penguin diagrams give at
most a 
6% correction to any amplitude. It would be
easy to include P1;2

ew , but for simplicity we neglect them
in what follows. SCET allows contributions from C7 and
C8 to be included in (3), giving e3 � �1:5	 10�2 and
e4 � �1:3	 10�2.

Of the five remaining isospin parameters, one,
j�u�T�C�j, is fixed by Br�B� ! �0��� and just sets the
overall scale. We choose the remaining four parameters as

pc � �
j�cj

j�uj
Re

�
P
T

�
; ps � �

j�cj

j�uj
Im

�
P
T

�
;

tc �
jTj

jT � Cj
; � � Im

�
C
T

�
:

(4)

The parameters pc and ps determine the size of the ‘‘pen-
guin’’ contribution P relative to the tree T, and the parame-
ters tc and � determine the shape of the isospin triangle as
shown in Fig. 1. The relations to parameters used previ-
ously [5,14] are r2c � p2

c � p2
s and tan!c � ps=pc.

In terms of the parameters in (4) the observables can be
written as (neglecting electroweak penguin diagrams)

S���� ���sin�2�� 2��� 2sin�2����pc � sin�2��

	 �p2
c �p2

s���1� 2pc cos��p2
c �p2

s�
�1;

C���� �
2ps sin�

1� 2pc cos��p2
c �p2

s
;


Rc � t2c�1� 2pc cos��p2
c �p2

s�;


Rn � �1� tc�2� t2c�p2
c �p2

s�� 2tc�1� tc�pc cos�

� ��2t2cps�cos�

��1�
�����������������
1� �2t2c

q
�2tc�1�pc cos��;


RnC�0�0 � 2tc sin��tcps �ps

�����������������
1� �2t2c

q
� �pctc�: (5)

The � signs in the last two equations should be chosen to
be the same, and correspond to whether the apex of the
triangle in Fig. 1(a) is to the right or left of the �0; 0� point.
Since both j�cj and j�uj are absorbed into the hadronic
parameters ps and pc, there is no added uncertainty from
jVubj. For the CKM angle � we use the latest average
[1,12], � � 23:3� � 1:5�.
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The full isospin analysis requires solving the five
Eqs. (5) to obtain the parameters pc, ps, tc, and � defined
in (4) and the weak angle �. From S���� and C���� one
obtains two solutions for the parameters ps and pc as
functions of the angle �. Using these, 
Rc determines
tc���. Finally, 
Rn and 
RnC�0�0 each give two quadratic
equations for �, which in general have four intersections in
the �� � plane. We call �1;2 the two solutions from 
Rn and
�3;4 the two solutions from 
RnC�0�0 . An example of this
GL isospin analysis is shown in Fig. 2, where we use the
current central values for the data. For illustration we
picked the solution for pc and ps with jP=Tj< 1, but
have shown all four �i’s.

An obvious feature in Fig. 2 is the isospin bounds on �.
It is well known that there are bounds on � in the absence
of a measurement of C�0�0 [15]. To find these analytically,
one defines � � �� �� �eff � # where

sin�2�eff� � S���1� C2
���

�1=2 � �0:66� 0:14;

cos�2#� � � 
R� 1��1� C2
���

�1=2 � 0:53� 0:19;
(6)

with 
R � �1� 
Rc � 
Rn�
2=�2 
Rc�. The four solutions are

�163:0� � � � �105:0�; �31:8� � � � 26:3�;

17:1� � � � 75:2�; 148:0� � � � 206:0�; (7)

with uncertainty �8:2� on each limit. At each of these
bounds the two solutions �1;2 become degenerate, and
beyond they are complex, indicating that the isospin tri-
angle does not close.
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FIG. 3 (color online). Regions of � preferred by our analysis.
The shaded areas show our best estimate of the theoretical
uncertainty from power corrections, �0:2 � � � 0:2 as well
as the pessimistic estimate �0:4 � � � 0:4. Experimental un-
certainties are not shown.
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Solutions for � from the GL isospin analysis are given
where the curves �3;4 intersect the curves �1;2. There are up
to four solutions within each isospin bound, which are
symmetric around �eff � �� �� �eff . We show in
Fig. 2 the results for 17:1� � � � 75:2�. The current
central values �3;4 do not intersect �1;2, and in the absence
of experimental uncertainties there would be no solution
for �. The current central values for the observables are
such that the solutions for � from 
Rn and 
RnC�0�0 are
almost tangential. Including experimental uncertainties, a
large range of � is allowed, with the highest confidence at
� � 27� and � � 65�. This conclusion agrees with the
CKMfitter group’s analysis which incorporates C�0�0 [16].

Using SCET at LO in �s�mb� and �QCD=mb we have
� � 0 [5], which corresponds to flat isospin triangles in
Fig. 1. Equivalently

�
O

�
�QCD

mb
; �s�mb�

�
: (8)

Neglecting EW penguin diagrams, � is a renormalization
group equation invariant quantity since Eq. (5) fixes it in
terms of observables. Equation (8) makes an extraction of
� from B ! �� possible without needing precision data
on C�0�0 . In this method the central values for � are
determined by finding the places where the �1 and/or �2
curves cross the x axis, meaning we solve �1;2��� � 0. The
other hadronic parameters, pc, ps, and tc are determined in
the same way as in the isospin analysis. This proposal for
determining � using Eq. (8) is the main result of this Letter.

Using the central values for all the data besides C�0�0

and solving �1;2��� � 0 gives the solutions

� � �159�; � 105�; 21:5�; 74:9�: (9)

We have four solutions rather than the eight of the isospin
analysis [which occur within the first and third isospin
bounds in (7)], because factorization for the B ! ��
amplitudes resolves the discrete ambiguity in ps and pc in
favor of jP=Tj< 1 solutions [this follows from the factor-
ization for light-quark penguin diagrams, the size of
Wilson coefficients, charm velocity power counting, and
factors of �s�mc� [5,7] ]. Next we analyze the theoretical
and experimental uncertainties in our method for �, and
contrast these with the isospin analysis, focusing on the
two solutions that can occur in the 17:1����75:2� re-
gion preferred by global fits for the unitarity triangle [16].

To estimate the theoretical uncertainty we take

�0:2 � � � 0:2; (10)

which corresponds to roughly a 20% effect from perturba-
tive or power corrections. We also consider a much more
pessimistic scenario where this range is doubled to � �
�0:4. Note that j�j< 0:2 can accommodate the so-called
‘‘chirally enhanced’’ power corrections, which have been
argued to dominate [7]. Using the results from Ref. [7],
including known �s�mb� and power corrections, we ran-
domly scan the two complex parameters XA and XH in their
23180
default range to find j�j � jIm�C=T�jQCDF � �0:05�
0:04. This is below the uncertainty assigned to our analysis.

In Fig. 3 we show �1;2 for the region 65� < � < 78�.
Here the solution is � � 74:9�, and the different shading
corresponds to the theory uncertainty with j�j< 0:2�0:4�.
The solution for � is very close to the isospin bound, so the
upward uncertainty on � is very small. (The uncertainty in
the isospin bound is contained in the experimental uncer-
tainty.) For the downward uncertainty we consider the
overlap with the shaded region. For j�j< 0:2 we find
!�theo�

�0:3�
�1:5� , while for j�j<0:4 we find !�theo �

�0:3�
�5:2� .

On top of that there are uncertainties from hadronic isospin
violation, typically & 3%, which we take to be �2�. (A
slightly larger 
5� uncertainty was found in [17], but us-
ing a smaller penguin amplitude. Larger isospin violation
can be accounted for by scaling up the �2� lower bound on
our theory error.) Thus, with perfect data at the current
central values we arrive at a theory uncertainty with j�j<
0:2 as !�theo � �2�. Repeating for the smaller solution at
� � 21:5�, we find a larger theory uncertainty, !�theo �
�8:7�
�4:4� , since the �1;2 curves are flatter near this solution.

To determine the 1	 experimental errors, we use the
program MINUIT. Taking � � 0 and fitting to � and the four
hadronic parameters, we find

� � 21:5
��9:4�
�7:9� ; � � 74:9

��8:1�
�10:6� : (11)

These uncertainties are purely experimental and are propa-
gated with the assumption that the original input data are
uncorrelated. If we instead set � � 0:2, then we find � �
73:3

��8:8�
�13:3� and � � 30:7

��11:1�
�7:2� , whereas fixing � � �0:2

gives � � 75:2
��7:6�
�9:5� and � � 17:2

��8:7�
�6:9� . Combining these

numbers we obtain our final result for � including all
sources of uncertainty

� � 74:9� � 2
��9:4�
�13:3� : (12)

Here the first error is theoretical, and the last errors are
experimental where we picked the largest range obtained in
varying ���0:2. The theory error increases to !� �
�2�

�5:2� for the more pessimistic case � � �0:4. The analog
of (12) for the lower solution is � � 21:5

��8:7��11:1�
�4:4��7:9� .
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FIG. 4. Uncertainty in the isospin analysis from C�0�0 (y axis)
vs theoretical uncertainty from our new method (x axis). The
upper (lower) two plots use a �0:5 (�0:25) uncertainty in �3;4.
The plots on the left (right) correspond to the solution near the
lower (upper) isospin bound.
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The analysis presented here relies on the fact that a small
value of j�j is allowed only for a narrow range of �. While
this is certainly true given the current central values of the
data, it is instructive to investigate how the quality of the
analysis is affected if the data central values change. For
example, it could be that the value of �1 never exceeds 0.2,
increasing the uncertainties from the small-� analysis sig-
nificantly. A second extreme situation is that � never
reaches zero. To study these questions, we generate ran-
dom sets of data using Gaussian distributions with the
current central values and width of the 1	 uncertainties.
We generate 10 000 sets of ‘‘data,’’ and after imposing
sin�2�eff�< 1 and cos�2#�< 1 are left with 9688 sets. Of
these, 96% have solutions for � � 0. For �1 we find 88%
(70%) of the sets have the maximum value above 0.2 (0.4).
It is only for these data sets that our analysis works. For �2
we find that 
100% of the sets have their minimum below
�0:4. Thus, the small � analysis works in most cases.

We can also study the uncertainty in our analysis, com-
pared to the GL isospin analysis. Rather than performing a
full error analysis for the 9688 sets, we use the following
approximation. We assume that experimental uncertainty
!C�0�0 dominates, and compare the resulting uncertainty
in the GL isospin analysis to the theoretical uncertainty in
our analysis, for cases where values of � exist with � > 0:2
as discussed above. The current !C�0�0 � �0:39 gives
rise to a !�3;4 
�0:5. In Fig. 4 we show the uncertainties
in the GL analysis compared with the theoretical uncer-
tainties of the analysis presented here, for both solutions of
�. The plots use 4000 points. If we take !�3;4 
�0:25, the
GL analysis still has uncertainties in � that are consider-
ably larger than the small � analysis. We also see that the
�2� error quoted in (12) is typical.

We have presented a new method for obtaining � from
B ! �� decays without C�0�0 . Our analysis uses SCET to
eliminate one hadronic parameter. The theory uncertainty
23180
for a solution � � 74:9� is small, �2 or �2�

�5:2� , depending
on the estimate for power corrections. Analyzing possible
future shifts in the data and decreases in the C�0�0 uncer-
tainty, we find that this method should have smaller uncer-
tainty than the isospin analysis for quite some time. The
analysis can be redone including the electroweak penguin
diagrams. Obviously agreement between BABAR and Belle
on S���� and C���� is needed before one will have
complete trust in the � from B ! ��.
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