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Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography
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We propose an efficient method to verify the upper bound of the fraction of counts caused by
multiphoton pulses in practical quantum key distribution using weak coherent light, given whatever
type of Eve’s action. The protocol simply uses two coherent states for the signal pulses and vacuum for the
decoy pulse. Our verified upper bound is sufficiently tight for quantum key distribution with a very lossy
channel, in both the asymptotic and nonasymptotic case. So far our protocol is the only decoy-state
protocol that works efficiently for currently existing setups.
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Unlike classic cryptography, quantum key distribution
(QKD) [1-3] can help two remote parties to set up a secure
key by the noncloning theorem [4]. Further, proofs for the
unconditional security over noisy channel have been given
[5—8]. The security of practical QKD with weak coherent
states has also been shown [9,10]. However, there are still
some limitations for QKD in practice, especially over long
distance. In particular, large loss seems to be the main
challenge to the long-distance QKD with weak coherent
states. A dephased coherent state | we'®) is actually a mixed
state of
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and P,(u) = "nrf! " Here u is a non-negative number. In
practice, especially in doing long-distance QKD, the
channel transmittance 7 can be rather small. If 1<
(1 — e * — we *)/u, an eavesdropper (Eve) in principle
can have the full information of Bob’s sifted key by the
photon-number-splitting (PNS) attack [11]: Eve blocks all
single-photon pulses and part of multiphoton pulses and
separates each of the remained multiphoton pulses into two
parts; therefore, each part contains at least one photon. To
each split pulse, she keeps one part and sends the other part
to Bob, through a lossless channel. As it has been shown
[9,10], they can still distill some final key if the fraction of
tagged bits (counts caused by multiphoton pulses) is not
too large. However, the key distillation requires informa-
tion of the value A, the upper bound of the fraction of
tagged bits, or equivalently, the value A, the lower bound
of the fraction of Bob’s detected bits caused by single-
photon pulses from Alice.

Given the separate result of key distillation [9,10] with
tagged bits, verifying a tight bound for A is the first
important thing in QKD. We shall show how to verify it
efficiently. Since the calculation of A and A; are equiva-
lent, here we only focus on the verification of A. As it was
shown in Ref. [12], Eve may have many choices in doing
the PNS attack; therefore, a simple-minded method does
not give a faithful verification. A very important method
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with decoy states was then proposed by Hwang [13], where
the unconditional verification of the multiphoton counting
rate is given. Hwang’s decoy-state method can faithfully
estimate the upper bound of A through decoy pulses, given
whatever type of PNS attack. (Remark: decoy-state method
is not the only solution to the issue [14,15].) However,
Hwang’s initial protocol [13] does not give a sufficiently
tight bound. For example, in the case of u = 0.3, by
Hwang’s method, the optimized verified upper bound of
A is 60.4%. As it has been mentioned [13,16], decoy-state
method can be combined with the result in [9,10] to distill
unconditionally secure final key. With the value A =
60.4%, the key rate can be rather low in practice [9,10].
Following Hwang’s work [13], decoy-state method was
then studied by Lo and co-workers [16,17]. They pro-
posed their main protocol using an infinite number of
decoy states. In such a way the counting rates of each state
[n)(n| can be calculated; therefore, an exact value of A
can be given. However, such a protocol seems to be in-
efficient in practice, because it requires an infinite number
of classes of different coherent states to work as the decoy
states [18]. Prior to this, a review of PNS attack was given
with some very shortly stated rough ideas for possible
solution [17]. However, no explicitly demonstrated result
was given there [17,18].

Here we present a new deocy-state protocol with explicit
demonstrations. Our protocol uses only three different
states and the verified bound values are sufficiently tight
for long-distance QKD. The main idea here is to watch the
counting rates of all three classes of states and treat them
jointly with nontrivial inequalities. In the protocol, coher-
ent states with average photon number w, u' are used for
signal pulses and vacuum is used for the decoy pulse. Since
both u and w’ are in a reasonable range, pulses produced in
both states can be used to distill the final key. Moreover, we
have for the first time considered the nonasymptotic effects
in the decoy-state method.

For simplicity, we denote those pulses produced in state
|we®), |u'e?), 10) as class Y, Y/, and Y, respectively.
The value 0 in a coherent pulse is random. Alice mixes the
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positions of all pulses; therefore, no one but Alice knows
which pulse belongs to which class in the protocol. They
observe the counting rates of each class and then verify the
upper bounds of counts caused by multiphoton pulses from
class Y, Y/, respectively. If these values are too large,
they abandon the protocol; otherwise they go on to do key
distillations using pulses from each class of Y, and Y,/ by
the method given in [9,10].

We first define the counting rate of any state p: the
probability that Bob’s detector clicks whenever a state p
is sent out by Alice. We disregard what state Bob may
receive here. This counting rate is called the yield in other
literatures [13,16]. We denote the counting rate (yield) of
vacuum, class Y, Y/v YM/, by notations s, S/L, Su” respec-
tively. These three parameters are observed in the protocol
itself: after all pulses are sent out, Bob announces which
pulse has caused a click and which pulse has not caused a
click. Since Alice knows which pulse belongs to which
class, Alice can calculate the counting rates of each class
of pulses. Therefore, we shall regard sy, S,,, S,/ as known
parameters in protocol. The value s is the counting rate at
Bob’s side when Alice sends vacuum pulses. We shall also
call s, the vacuum count or dark count rate.

Their task is to verify the upper bound of A, the fraction
of multiphoton counts among all counts caused by pulses
in class Y, and also the upper bound of A’, the fraction of
multiphoton counts among all counts caused by pulses in
class Y,,. We shall show how they can deduce the upper
values of A, A’ from the values of {s¢, S w S u’}' We shall
focus on A first and later obtain A’ based on the knowledge
of A.

For convenience, we always assume

W e > pemt 2)
in this Letter. A dephased coherent state |we'”) has the
following convex form:

pu = e *0X0l + we #[1IX1] + cp, 3)

andc=1—¢e* — ue * >0,

Pec =

Q|-

> Py(w)ln)nl. (4)
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Similarly, state |u’e’?) after dephasing is
12 ,—u
p'e
e P +dpy
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ple
ure k
sity operator. (We shall only use the fact that d is non-
negative and p, is a density operator.) In deriving the
above convex form, we have used the fact P,(u')/
Py(u') > P,(u)/Py(w) for all n > 2, given the conditions
of Eq. (2). With these convex forms of density operators, it

andd=1—e* —pyle ™ —¢ = 0. py is a den-

is equivalent to say that Alice sometimes sends nothing
(10)(0]), sometimes sends |1){1|, sometimes sends p,, and
sometimes sends p,, though Alice does not know which
time she has sent out which one of these states. In each
individual sending, she only knows to which class the pulse
belongs. We shall use notations sy, sy, S, Sw SMr, s, for the
counting rates of state |0)O|, [L)X1], p., pur p s pas re-
spectively. Given any state p, nobody but Alice can tell
whether it is from class Y, or ¥,/. Asymptotically, we have

sp(m) = s5,(n) (6)

and s,(u), s,(u') are counting rates for state p from class
Y, and class Y/, respectively.

We shall use the safest assumption that Eve also controls
the detection efficiency and dark count of Bob’s detector.
We only consider the overall transmittance including the
channel, Bob’s devices, and detection efficiency. By
Eq. (3), we relate A with parameter s, the multiphoton
counting rate in class Y, by:

A= cg—C. (7)

M

To verify the upper bound of A for pulses from class Y,
we only need to verify the upper bound of s, the counting
rate of mixed state p.. The task is reduced to formulating
s by {s0, Sy, S}, which are measured directly in the
protocol itself. The coherent state p,/ is convexed by p.
and other states. Given the condition of Eq. (2), the proba-
bility of p. in state p, is larger than that in p ,. Using this
fact we can make a preliminary estimation of s.. From
Eq. (5) we immediately obtain
2 e~ w

S'ur = E_M’SO + ,U«/e_”'/sl + C%SC + dsd. (8)

5o is known, s, and s, are unknown, but they are never less
than zero. Therefore, we have

pre #

cs, = Sy — e M5y — ule Ms)). ©)]

— !
[.lee W

We can obtain Hwang’s main result [13] by

2,— 1 2,—u
e o e
CS. = W(SM/ —e # So) = FSM/. (10)
.. . . ure S ..
Combining this with Eq. (7) we have A = — w,; . This is
ure ks,

just Eq. (12) in Ref. [13]. In the normal case that there is no
Eve’s attack, and Alice and Bob will find S, /S w=

— !
11:27"7]*; = u'/u in their protocol; therefore, they can verify

A = BE5, which is just Eq. (13) of Hwang’s work [13].

e Pl
Our derivation looks significantly simpler.

Having obtained the crude results above, we now show
that the verification can be done more sophisticatedly and
one can further tighten the bound significantly. In the
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inequality (10), we have dropped terms s; and s,, since
we only have trivial knowledge about s, and s, there, i.e.,
s1 = 0 and s, = 0. Therefore, inequality (9) has no advan-
tage at that moment. However, after we have obtained the
crude upper bound of s., we can have a larger-than-zero
lower bound for s, provided that our crude upper bound
for A given by Eq. (10) is not too large. From Eq. (3) we
have

e Fsg+ pe Fsy + s =8, (1
With the crude upper bound for s. given by Eq. (10), we
have the nontrivial lower bound for s; now:

51 =8, —etsg—cs.>0. (12)
Therefore, tight values for s. and s; can be obtained by
solving the simultaneous constraints of Eq. (11) and in-

equality (9). We have the following final bound after solv-
ing them:

e HS M
A=t (“/7,”“—1)#“, o a3y
Mmoo p\ule S, 'S,

Here we have used Eq. (7). In the case of sq < 7, if there is
no Eve, §,/S, = u'/u. Alice and Bob must be able to
verify

wep
A=“(e, 1)
mo=p

=M (14)
u'=p—0
in the protocol. This is close to the real value of fraction of
multiphoton counts: 1 — e¢™#, given that n << 1. In our
derivation, all multiphoton counts from pulses in class Y,
are due to only one mixed state, p.. Therefore, we only
need to calculate one unknown parameter, s.. However, in
Ref. [16], they have considered the contribution of each
Fock state and there are an infinite number of unknown
variables of {s,,}. Therefore, they need an infinite number of
different coherent states in their main protocol [16] while
we only need three.

With the upper bound of s, (or A), pulses from class Y,
can be used for key distillation by [9,10]. Given s., we can
calculate the lower bound of s, through Eq. (12). Given the
fact that pulses in both classes have the same value of s,

and 1 — A — S°§—_H = S"gew , we have
w w
—u S / / —u
A=1- (1 —A- eS S(’)S“—“e#-ﬂ —%. (15)
o uw' u

The values of w, u' should be chosen in a reasonable
range, e.g., from 0.2 to 0.5. To maximize the key rate, one
needs to consider the quantities of transmittance, quantum
bit error rate (QBER), and vacuum counts jointly. The
optimization is not studied in this Letter.

The results above are only for the asymptotic case. In
practice, there are statistical fluctuations; i.e., Eve has non-
negligibly small probability to treat the pulses from differ-

ent classes a little bit differently, even though the pulses
have the same state. It is insecure if we simply use the
asymptotic result in practice. Our remaining task is to
verify a tight upper bound of A and the probability that
the real value of A breaks the verified upper bound is
exponentially close to 0.

The counting rate of any state p in class ¥, now can be
slightly different from the counting rate of the same state p
from another class, Y,,, with non-negligible probability.
We shall use the primed notation for the counting rate for
any state in class Y, and the original notation for the
counting rate for any state in class Y,. Explicitly,

Egs. (9) and (11) are now converted to
e tsy+ pe Fsp +es. =S8,
2 —_
| < 'LL € a
CSe = 2 ,—u
un'=e
X (S, — ple M — e Hs)).

(16)

Setting s, = (1 — r,)s, forx =1, ¢, and s{, = (1 + rg)s,
we can replace all primed parameters {s{, s}, s.} by un-
primed ones in the above equation; therefore, we obtain

!
,u’e“[(l —rc)%—1j|A$,ue”“/S#//S#—,u/e”

+[(w' = w)so+risi +rosol/S,.
(17)

From this we can see, if u and u' are too close, A can be
very large. The important question here is now whether
there are reasonable values for u/, w so that our method
has significant advantage to the previous method [13]. The
answer is yes.

Given N; + N, copies of state p, suppose the counting
rate for Ny randomly chosen states is s, and the counting
rate for the remaining states is s),, the probability that s, —
s),>8, is less than exp(—383Ny/s,) and Ny =
Min (N, N,). Now we consider the difference of counting
rates for the same state from different classes, ¥, and Y.
To make a faithful estimation for exponential certainty, we
require B%No/sp = 100. This causes a relative fluctuation

To formulate the relative fluctuation

)
r,=2<10, /-4
Sp

P 5,No"
r1, r. by s. and s;, we only need to check the number of
pulses in p, |1){1] in each class in the protocol. That is, we

can replace ry, r, in Eq. (16) by 10e#/2 /1o 10, /L5,

respectively, and N is the number of pulses in class Y,,.
Since we assume the case where the vacuum-counting rate
is much less than the counting rate of state p ,, we omit the
effect of fluctuation in vacuum counting; i.e., we set rg =
0. With these inputs, Eq. (16) can now be solved numeri-
cally. The results are listed in Table I. From this table we
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TABLE I. The verified upper bound of the fraction of tagged
pulses in QKD. Ay is the result from Hwang’s method. Ay is the
true value of the fraction of multiphoton counts in case there is
no Eve. Ay and Ay do not change with channel transmittance.
Ay is bound for pulses in class Y, given that = 1073, Ay,
and A’W2 are bound values for the pulses in class Yo, Yy,
respectively, given that » = 10™*. We assume s, = 1076, The
number of pulses is 10'° in class Y,, Y, in calculating Ay, and
8 X 10'% in calculating Ay, Ay, (Our results will only increase
by 0.03 even if we only use 10'° pulses. Actually, a pretty good
key rate can be obtained with only 10'° pulses [21].) 4 X 10°
vacuum pulses are sufficient for class Y. The bound values will
change by less than 0.01 if the value of sq is 1.5 times larger. The
numbers inside the brackets are chosen values for w’. For
example, in the column of u = 0.25, data 30.9%(0.41) means,
if we choose u = 0.25, u’ = 0.41, we can verify A = 30.9% for
class Y.

m

u 0.2 0.25 0.3 035

Ay 44.5% 52.9% 60.4% 67.0%

Ap  183% 22.2% 25.9% 29.5%
Ay, 234%(0.34) 28.9%(0.38) 34.4%(0.43) 39.9%(0.45)
Ayr  25.6%(0.39) 30.9%(0.41) 362%(0.45) 41.5%(0.47)
w039 041 0.45 047

Ay 71.8% 74.0% 78.0% 79.8%

Ap  323% 33.7% 36.2% 37.5%
Al,  40.1% 42.2% 458% 486

can see that good values of w, u’ indeed exist and our
verified upper bounds are sufficiently tight to make QKD
over a very lossy channel. Note that so far this is the only
nonasymptotic result among all existing works on decoy
state. From Table I we can see that our nonasymptotic
values are less than Hwang’s asymptotic values already.
Our verified values are rather close to the true values.
Given the parameters in a typical real setup [19,20], we
believe that our protocol works over a distance longer than
120 km with u = 0.3, ' = 0.45, and a reasonable num-
ber of total pulses.

In summary, following Hwang [13], we have proposed
an efficient and feasible decoy-state method to do QKD
over a very lossy channel. We have for the first time clearly
demonstrated how it works efficiently with only three
classes of different states. We have for the first time con-
sidered the effect of statistical fluctuation for the decoy-
state method. Our method is further studied recently [21].

I am grateful to Professor H. Imai for his long-term
support. I thank T. Shimony for help in numerical calcu-
lation; J. Kim for inviting me to KIAS where I did part of
this job; W.-Y. Hwang, N. Liitkenhaus, K. Matsumoto, H.-
K. Lo, and many other colleagues for discussions.

Note added.—After this work was completed and pre-
sented, Ref. [22] was also presented and it was shortly
mentioned there that they can also make it with only a few
decoy states. We believe that prior to our presentation,

none of decoy-state proposals can really work efficiently
in practice [18].
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