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Dynamics of Narrow Bright Solitons in an Array of Attractive Atoms
in a Bose-Einstein Condensate
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We study the dynamics of a narrow bright soliton in a one-dimensional lattice of condensed attractive
atoms when the soliton width is comparable to the lattice spacing. If a momentum is imprinted to a
stationary state, the soliton can have oscillations around a site or it can undergo a random motion along the
array. The motion is very sensitive to the atomic background distribution, and a thermal cloud or quantum
field fluctuations can induce a random motion of the soliton.
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In a Bose-Einstein condensate (BEC) of dilute atomic
gases, the field fluctuations are small with respect to the
field expectation value and a spatial coherence is present in
the whole condensate. In this situation, we can replace the
quantum field �̂ with a mean-field � solution of the Gross-
Pitaevskii equation [1]. Coherence of the BEC has been
observed in many instances [2–7]. In a one-dimensional
vertical array, coherence yields Bloch oscillations [8]. The
corresponding theory is given in Ref. [9]. When the inter-
particle interaction is attractive, there is a competition
between the atom-atom interaction and the Josephson cou-
pling of neighboring sites of the optical lattice. The first
one tends to cluster the atoms in the same well, whereas the
second one tends to spread them. The minimal energy state
is a bright soliton whose width decreases with the interac-
tion strength and increases with the amount of the
Josephson coupling. When the soliton width is larger
than the spacing of the optical lattice, the momentum is a
constant of motion [9]. Conversely, when the width is of
the order of the lattice spacing, the energy varies with the
packet position at the lattice periodicity [10,11] [Peierls-
Nabarro potential (PN)] and the momentum is not
conserved.

Here we study in detail the dynamics of a narrow soliton
in an array under the tight binding approximation. We use a
discrete nonlinear Schrödinger equation (DNLSE). By a
rescaling of time, the DNLSE has only a free parameter,
that is, the coefficient of the nonlinear term. We consider
nonlinearities large enough to confine the soliton ground
state within a small number of populated sites of the optical
lattice. First, we consider an infinite array. At the initial
time, a momentum p0 is imprinted to a soliton with mini-
mal energy. We find numerically the parameter region
where the soliton is not able to jump the PN barrier. This
region is wider than that evaluated by energetic consider-
ations. The position of the trapped soliton can have damped
oscillations or oscillations with beating. Lowering the
interactions, the system goes out of the trapping region
and jumps along the array sites. Near the trapping region
and with an infinite array, the soliton has initially a random
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trajectory, but eventually it loses energy and is again
captured by a site of the optical lattice. The behavior of
the soliton for long times depends sensitively on the bound-
ary conditions. During the motion, a fraction of atoms goes
away from the soliton. If the number of sites is sufficiently
small and there is an infinite potential at the borders, the
lost atoms are reflected by the borders and perturb the
dynamics of the soliton. We observe that the soliton motion
is very sensitive to this background. This leads one to
conjecture that a thermal atomic background or quantum
field fluctuations can induce a random motion of the
soliton.

A one-dimensional array can be created by the interfer-
ence of two tilted laser beams. The period of the potential
is d � �=�2 sin��=2��, where � and � are the wavelength
and the angle between the two beams, respectively. We
consider a harmonic potential m!2

?x
2
?=2 in the radial

directions. If the nonlinear interaction is small with respect
to the external potential, the radial and longitudinal coor-
dinates are separable and the system can be described by
the one-dimensional equation i @ @�0 � H0 � gj j2 	


 1
2
@2 
@r2 �U0 cosr � gj j2 , where r 	 klxk, U0 	

V0=C0, g � klg1D=C0, g1D 	 2aN!? �h, and �0 	 C0t= �h,
with C0 � �h2k2l =m. Here kl, N, and a are the wave vector
of the periodic potential, the number of atoms, and the
s-wave scattering length, respectively.  is normalized to
1. If gj j2 and its evolution frequencies are small with
respect to the gap between the first and second energy
bands, only the states in the first energy band contribute
to the dynamics. Let  bk be the corresponding Bloch states
with the property  bk �x� � exp�2�ik� bk �x
 2��. We
choose their phase such that  bk is real at the center of a
well, and introduce the states �n 	 �k 

b
k �x
 2�n�=

������
Ns

p
,

Ns being the number of wells. These states are orthonor-
mal, and we can write the wave function as a superposition
of�k,  � �k k�k. From the equation of motion for  , we
obtain the equation for  k, i _ n � 
�k�Ek=2� k�n �
g�klm 

k�n l�n m�n�klm, where Ek 	 
2
R
�
0H0�kdx

and �klm 	
R
�
0�


k�l�mdx. For sufficiently large values
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ofU0, the functions �k are localized in a well and Ek � E1

for k � 0 or 1 and �klm � �000 for k, l, or m not equal to
zero. For example, at U0 � 0:6 we find numerically E1 �
5:26� 10
3, E2 � 
6:90� 10
5, E3 � 1:48� 10
6,
�000 � 3:20� 10
1, �001 � 
1:20� 10
3, �011 �
4:04� 10
5, and �0–11 � 
2:04� 10
6. With jgj �
10
2, we have narrow solitons with most atoms in one or
two adjacent wells. It is evident that only the terms with E1

and �000 (tight binding approximation) contribute signifi-
cantly to the dynamics. We can use the DNLSE,

i
@ n
@�

� 

1

2
� n�1 �  n
1� ��j nj2 n; (1)

with the rescaling � 	 E1�0 and � 	 g�000=E1. The term
with E0 gives only an energy shift and it has been omitted.
The tight binding limit gives results [9] in agreement with
the experiment of Ref. [8], where the soliton width is much
larger than the array spacing. With narrow solitons the
nonlinear interaction could populate the higher energy
bands, and, in this case, the tight binding approximation
would break down. In order to neglect the higher energy
bands, the matrix elements of gj j2 between the first band
states and the higher ones have to be much smaller than the
energy gaps. This requirement is not incompatible with the
presence of narrow solitons. Indeed, we can have narrow
distributions with a sufficiently small jgj merely increasing
U0. Short solitons are present with j�j> 1; here we always
consider j�j< 4. ForU0 � 0:6 and j�j< 4, we can elimi-
nate adiabatically the higher energy bands. This gives
quintic terms in the discrete equation whose contribution
is negligible with respect to the contribution of the cubic
terms. The creation of a one-dimensional condensate with
attractive interaction was reported in Refs. [12,13] for a 7Li
condensate. The radial confinement was provided by a
single laser beam with a wavelength of 1:064 #m. The
periodic potential can be created with two tilted beams.
With a lattice spacing of 2 #m, we have C0 �
89:2� 103 �h. For U0 � 0:6, V0 is 0:6�U0 � 47:3�
103 �h. This value can be easily obtained with the setup
used in the experiments. The time rescaling is t � 2:1�
10
3�. With !? � 2�� 800 s
1 [12] and for j�j � 4,
we have Njaj ’ 2� 10
7. With a magnetic field of about
100 G or 600, it is possible to have a small negative
scattering length [12,13]. With a � 
0:1 nm, we have
N ’ 2000. The number of atoms in the experiment of
Ref. [13] was 6� 103. An even radial excitation can be
created with energy 2 �h!?. Also in this case, the radial
excitations can be adiabatically eliminated and give a
negligible quintic term in the discrete equation. The
three-body recombination rate represents the main contri-
bution to atom loss. With the loss rate constant reported in
Ref. [14], we obtain an average loss rate $l of about 5 s
1.
This quantity can be reduced decreasing the number of
atoms or increasing the array spacing and the radial di-
mensions. The loss rate is proportional to the square of the
density; thus with 500 atoms $l is about 0:3 s
1. With
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larger spatial dimensions C0 decreases; thus the dynamics
is slower, but $l is much smaller and it is possible to
observe the dynamics for larger �. Furthermore, the results
of Ref. [15] suggest that with the tuned scattering length
a � 
0:1 nm the three-body loss rate constant could be
reduced by a factor of about 2� 10
3 [16] with respect to
the value reported in Ref. [14].

The DNLSE is invariant with respect to the transforma-
tions  n !  

ne
i�n and � ! 
�, whence the presence of

soliton solutions for positive � (repulsive atomic interac-
tions) at the upper edge of the energy band. The creation of
a soliton with anomalous dispersion is reported in
Ref. [17]. The invariance is broken when the neglected
terms in the discrete equation are considered. In the fol-
lowing, we consider always a negative � and a negative
scattering length.

In Ref. [9] the dynamics is studied by a variational
approach with a Gaussian ansatz. If the Gaussian width
is sufficiently larger than the lattice spacing, some sums
over the site index can be replaced by integrals. For narrow
solitons such a replacement cannot be performed and
energy depends on the position [10]. The number of mini-
mal energy states is equal to the number of sites. If j�j is
very large, almost all the atoms are localized at a single
site. All the minimal energy solitons have the barycenter at
a lattice site and they are separated by the PN barrier. The
energy of  n is E � �n�


1
2 


n� n�1 �  n
1� �

�
2 j nj

4�.
Now let a momentum p0 be imprinted onto a soliton

with minimal energy. At the initial time the soliton has a
symmetric distribution centered at a site and the wave
function is real; we call it  �m�

n . When a momentum p0 is
applied, the wave function becomes  �m�

n eip0n. Notice that
p0 is adimensional. If the soliton jumps to another site, at
an intermediate time its barycenter is in the middle point of
two adjacent sites. Suppose that the corresponding density
distribution is symmetric with respect to this point. Let  �s�

n

be the state that has the minimal energy Es among the
states which are symmetric with respect to the middle point
of two neighboring sites. Then, the initial energy has to be
larger than Es in order to have a jump. We have evaluated
the energy of the ground states Em and of the saddle points
Es using the imaginary time evolution method (collapse
method). Starting from a function that is symmetric with
respect to a site or with respect the middle point of two
sites, the collapse method leads to  �m�

n or  �s�
n , respec-

tively. In Fig. 1(a) (solid line) we have reported ��E�w=j�j
as a function of j�j, where ��E�w 	 Es 
 Em is the height
of the potential walls. For � ! 0, we have ��E�w=j�j !
0; this limit corresponds to the case of Ref. [9]. For � !

1, we have ��E�w=j�j ! 1=4. In this limit, the minimal
energy state has all atoms at the same site and the saddle
point state has them in two neighboring sites with the same
population. The corresponding energies are �=2 and �=4,
respectively, and ��E�w=j�j � 1=4.
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FIG. 2 (color online). Evolution of the atomic density distri-
bution for � � 
2:46 and p0 � 0:6� with 150 sites. We have
included in the discrete equation also the terms with E2, �100,
�010, �001, and �111, with U0 � 0:6.
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FIG. 1. (a) ��E�w=j�j (solid line) and ��E�p0
=j�j (dashed

lines), for some values of p0, as functions of j�j. The values
of p0 are �=n, where n � 1, 2, 4, 8, and 16 from right to left.
The points of intersection of the dashed and dash-dotted lines
give the values of � and p0 for which we observe numerically
the jump of the atomic density maximum. (b) Phase diagram
�-p0 for an infinite array. The solid line is the threshold
evaluated numerically with the DNLSE; at its right the j�j
values yield trapping. The circles give the threshold evaluated
including also the terms with E2, �100, �010, �001, and �111, for
U0 � 0:6. The dashed line is the threshold evaluated by ener-
getic considerations. In the region between the plus symbols and
the solid line, the soliton moves along the sites until it is again
trapped in a site.
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Let Ep0
be the initial energy of a soliton with momentum

p0. In order to have a jump between two wells, the quantity
Ep0


 Em 	 ��E�p0
must be larger than ��E�w. We have

reported in Fig. 1(a) (dashed lines) the quantity ��Ep0
�=j�j

for some values of p0. For j�j & 1:5, the PN barrier is
practically negligible. The maximum energy of the soliton
is obtained with p0 � �. If j�j> 4, ��E�p0�� < ��E�w.
Thus it is impossible to have a jump of a soliton merely by
giving a momentum. Actually, we have seen numerically
that the threshold for j�j is overestimated. Even slightly
below the threshold, the soliton is not able to jump to
another site. During the motion, it loses atoms and under-
goes damped oscillations inside a well. The points of
intersection of the dashed and dash-dotted lines in
Fig. 1(a) give the � and p0 values for which we begin to
observe the jump of atomic density maximum. In Fig. 1(b),
we report the phase diagram �-p0. On the right of the solid
line there are the values for which we do not observe jumps
of the soliton. The dash line is the threshold evaluated by
23040
energetic considerations. The same threshold was reported
in Ref. [18] by a variational approximation. It is given by
the identity ��E�p0

� ��E�w. The circles give the thresh-
old evaluated including in the discrete equation also the
terms with E2, �100, �010, �001, and �111, with U0 � 0:6.
The discrepancy between the two results is very small and
further reduces slightly increasing U0.

For j�j> 1:5, at the initial time more than 95% of the
atoms are in three neighboring sites. If the soliton is
trapped, to study its dynamics we can consider the site
nM with maximum population and the two adjacent ones.
The soliton is described by three complex numbers. Since
the phase is arbitrary, there are five parameters. Three
parameters can be the soliton position x, its width (, and
the fraction of atoms Nsol in the three sites. Namely, x 	

�0�n
 nM�j nj
2=Nsol, (	

��������������������������������������������������������
�0�n
nM�

2j nj
2=Nsol
x

2
p

and Nsol 	 �0j nj2, where �0 is the sum over the three
sites. We can write the wave function of the soliton as n �
)ne

ipn�i*2n2=2 for n � nM 
 1, nM, and nM � 1, where )n
are positive numbers. The quantities p, *, x, (, and Nsol

have a bijective mapping with the wave function of the
soliton. We have evaluated these quantities in the region to
the right of the solid line of Fig. 1(b). They undergo
damped oscillations and the soliton goes into a stationary
state. In contrast to the trapping effect discussed in Ref. [9],
the quantity * goes to zero and the final state is a real wave
function beside a global phase factor. Near the solid line,
for p0 < 0:5�, we observe a pulsation of the position
oscillations. Also the momentum p has a beating of the
oscillations, with a phase �=2 with respect to x. In our
simulations we have used a sufficiently high number of
sites in order to neglect the boundary conditions.

To the left of the solid line in Fig. 1(b), the soliton has
sufficient energy to jump to another site. Near the threshold
and with an infinite array, the atomic cloud remains trapped
at a site after a small number of jumps. When the momen-
tum is increased or the nonlinear interaction is lowered, the
number of jumps grows and a random trajectory in the
2-3



FIG. 3 (color online). The same as in Fig. 2, but with (a) 250
and (b) 500 sites.
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array appears. This motion is damped, and eventually the
soliton is again trapped on a site. Sufficiently far from the
solid line, the random trajectory is replaced by one with
decreasing velocity, until the soliton reaches constant
speed (averaged over the lattice spacing) or stops again
at a site. In Fig. 1(b) we denote with � symbols some
values of � and p0 which give a motion with subsequent
trapping in a time of t � 800. The values of � between the
� symbols and the solid line give a final trapped soliton.
By decreasing j�j, the time with motion grows.

Figure 2 reports the space-time evolution of the density
distribution for � � 
2:46 and p0 � 0:6�, for 150 sites.
We have integrated the discrete equation including also the
terms with E2, �100, �010, �001, and �111, with U0 � 0:6.
The density is represented in logarithmic scale in order to
magnify the background atomic distribution. The largest
fraction of atoms is lost at the initial stage of motion.
Almost all of them move in the direction opposite to the
soliton. The escaped atoms are reflected by the end caps
and hit the soliton at t� 200. Notice that the end caps can
be realized by off-resonant lasers [12]. This atomic back-
ground distribution perturbs the soliton and sustains the
random motion for long times. The number of atoms in the
soliton fluctuates, but after a transient of �t� 25 its aver-
age does not decrease during the evolution. The trajectory
is very sensitive to the initial conditions. It changes also
with a variation of 0.1% of the momentum. In Fig. 3 we
report the same distribution, but with (a) 250 and (b) 500
sites. It is evident that a small background has important
effects of the soliton dynamics. The density of the lost
atoms is less than 1%. Note that at t� 300 in Fig. 3(a) the
background induces a soliton motion opposite to the back-
ground direction. The soliton behaves as a particle with
negative mass. In our simulations the background is pro-
duced during the motion, but at finite temperature also a
thermal cloud is present. Our simulations suggest that this
cloud can have important effects on the dynamics.
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Furthermore, with a sufficiently small number of atoms
in the soliton, quantum fluctuations could be relevant and
induce a random walk of the soliton.

In conclusion, for a narrow soliton in a one-dimensional
array with an initial momentum, we have found a parame-
ter region where it is trapped on a site. Energetic consid-
erations overestimate the threshold of the interaction
strength above which there is trapping. Near the threshold,
the soliton position undergoes oscillations with pulsations.
Below the threshold, the soliton has sufficient energy to
jump to other sites. In a region of the parameter space, the
soliton has a random motion on the array, until it is again
captured by a site at a finite time. A small background
distribution can sustain the motion preventing the soliton
from being captured at a site. Our results lead one to
conjecture that at finite temperature the thermal back-
ground can induce a random motion of a soliton. It would
be interesting to study this temperature-induced diffusion
of the barycenter. Even at very low temperatures and for a
sufficiently small number of atoms, a diffusion could be
given by quantum fluctuations of the field. This would be
analogous to the macroscopic quantum tunneling of a
collective variable [19].
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