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An Intrinsic Limit to Quantum Coherence due to Spontaneous Symmetry Breaking
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We investigate the influence of spontaneous symmetry breaking on the decoherence of a many-particle
quantum system. This decoherence process is analyzed in an exactly solvable model system that is known
to be representative of symmetry broken macroscopic systems in equilibrium. It is shown that spontaneous
symmetry breaking imposes a fundamental limit to the time that a system can stay quantum coherent. This
universal time scale is tspon ’ 2�N �h=�kBT�, given in terms of the number of microscopic degrees of
freedom N, temperature T, and the constants of Planck ( �h) and Boltzmann (kB).
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Introduction.—The relation between quantum physics at
microscopic scales and the classical behavior of macro-
scopic bodies has been a puzzle in physics since the days of
Einstein and Bohr. This subject has revived in recent years
both due to experimental progress, making it possible to
study this problem empirically, and because of its possible
implications for the use of quantum physics as a computa-
tional resource [1]. This ‘‘micro-macro’’ connection ac-
tually has two sides. Under equilibrium conditions it is
well understood in terms of the mechanism of spontaneous
symmetry breaking. But in the dynamical realms its precise
nature is still far from clear. The question is ‘‘Can sponta-
neous symmetry breaking play a role in a dynamical re-
duction of quantum physics to classical behavior?’’ This is
a highly nontrivial question as spontaneous symmetry
breaking is intrinsically associated with the difficult prob-
lem of many-particle quantum physics. Here, we analyze a
tractable model system, which is known to be representa-
tive of macroscopic systems in equilibrium, to find the
surprising outcome that spontaneous symmetry breaking
imposes a fundamental limit to the time that a system can
stay quantum coherent [2,3]. This universal time scale
turns out to be tspon ’ 2�N �h=�kBT�.

This result is surprising in the following sense. Consider
a macroscopic body at room temperature; �h=�kBT� ’
10�14 seconds, which is quite a short time. However,
multiplying it with Avogadro’s number N ’ 1024, tspon
becomes ’ 1010 seconds, a couple of centuries. Given all
other sources of decoherence for such a large macroscopic
body, this is surely not a relevant time scale. However,
quantum systems of contemporary interest are typically
much smaller. Let us, for instance, consider a flux state
qubit with a squid the size of one cubic micron and a
temperature of the order of 1 K [4]. The time tspon then
turns out to be of order of seconds, a coherence time scale
which might well be reached in the near future. The
counterintuitive feature of this intrinsic decoherence
mechanism linked to equilibrium classicality is that it starts
to matter when systems become small.

Spontaneous symmetry breaking.—In mainstream quan-
tum measurement theory, the nature of the classical ma-
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chine executing the measurement is treated rather
casually—it is just asserted to exist, according to daily
observations. However, eventually this machine is also
subjected to the laws of quantum physics. After all, it is
made of microscopic stuff similar to the small quantum
system on which the machine acts. The description of this
machine typically involves 1024 strongly interacting quan-
tum particles, and this is not an easy problem. In fact, the
very existence of the machine seems to violate the basic
laws of quantum physics. The most fundamental difference
between quantum and classical physics lies in the role of
symmetry. Dealing with an exact quantum mechanical
eigenstate, all configurations equivalent by symmetry
should have the same status in principle, while in a classi-
cal state one of them is singled out. For example, given that
space is translationally invariant, the measurement ma-
chine should be in an eigenstate of total momentum, being
spread out with equal probability over all of space. In the
classical limit, however, it takes a definite locus. The
explanation of this ‘‘spontaneous symmetry breaking’’ in
terms of the singular nature of the thermodynamic limit is
one of the central achievements of quantum condensed
matter physics [5]. One imagines a symmetry breaking
‘‘order parameter field’’ h (e.g., a potential singling out
of a specific position in space). Upon sending h to zero
before taking the thermodynamic limit (N ! 1) one finds
the exact quantum ground state respecting the symmetry.
However, taking the opposite order of limits one finds that
the classical state becomes fact.

What does all of this have to do with the dynamical
phenomenon of decoherence? Decoherence refers to the
fact that the quantum information encoded in some micro-
scopic state entangles in the course of its time evolution
with environmental degrees of freedom. Since this infor-
mation cannot be recovered ‘‘for any practical purpose,’’
one should trace out the environment from the density
matrix with the effect that the reduced density matrix
will reveal a mixed state. The crucial point is that sponta-
neous symmetry breaking is intrinsically linked to the
presence of a spectrum of ‘‘environmental states.’’ In a
rigorous fashion, the quantum information carried by these
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FIG. 1 (color). Semiclassical time evolution of a two spin
qubit that at t � t0 starts interacting with a Lieb-Mattis mea-
surement machine. Quantum coherence is preserved at all times.
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states cannot be retrieved when the body is macroscopic.
This so-called ‘‘thin spectrum’’ is so sparse that it even
ceases to influence the partition function [6]. The question
we address in the remainder is to what extent this thin
spectrum can be a source of decoherence, intrinsically
associated with the fact that quantum measurements need
classical measurement machines.

Given that spontaneous symmetry breaking involves the
a priori untractable problem of a near infinity of interacting
quantum degrees of freedom, this question cannot be an-
swered in full generality. However, some time ago it was
discovered that the mechanism of spontaneous symmetry
breaking reveals itself in representative form in a simple,
integrable model. This model is the Lieb-Mattis long-
ranged quantum Heisenberg antiferromagnet [7], given
by the Hamiltonian

HLM �
2jJj
N

SA 	 SB � h�SzA � SzB�: (1)

It is defined for a bipartite lattice with A and B sublattices,
where SA=B is the total spin on the A=B sublattice with z
projection SzA=B, and h is the symmetry breaking field, in
this case a staggered magnetic field acting on the staggered
magnetization Mz � SzA � SzB. The particularity of the
Lieb-Mattis Hamiltonian is that every spin on sublattice
A is interacting with all spins on sublattice B and vice
versa, with interaction strength 2jJj=N (which depends on
the total number of sites N so that the system is extensive).
This very simple Hamiltonian accurately describes the thin
spectrum encountered in more complicated Hamiltonians,
like the nearest neighbor Heisenberg antiferromagnet, the
BCS superconductor, or the harmonic crystal [8,9].
Moreover, in this Hamiltonian the singular nature of the
thermodynamic limit can be explicitly demonstrated
[6,10]. We therefore use the Lieb-Mattis magnet as a model
for a measurement machine.

Measurement scheme.—Our scheme for quantum mea-
surement using this Lieb-Mattis magnet explicitly keeps
track of the particular role of the thin spectrum. We start
out preparing the Lieb-Mattis machine built from N spins
at time t < t0 in the symmetry broken Néel ground state
(hMzi � 0) of HLM. The microscopic quantum system to
be measured is isolated at t < t0 and consists of two qubits
(qubits a and b, each with two S � 1=2 states) in a maxi-
mally entangled singlet state, jqubiti� 1��

2
p 
j "a#bi�j #a"bi�.

At time t � t0 we instantaneously include qubit a�b� in the
Lieb-Mattis (infinite range) interactions of the spins on the
A�B� sublattice of the Lieb-Mattis machine. We then fol-
low the exact time evolution of the coupled N � 2 particle
system at t > t0:

Ht<t0 � HLM � Sa 	 Sb;

Ht>t0 �
2jJj
N � 2

SA�a 	 SB�b � h�SzA�a � SzB�b�;
(2)

where SA�a is SA � Sa, and SB�b is SB � Sb.
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To obtain further insight into how this quantum mea-
surement works, let us first see what would happen if the
measurement machine would be semiclassical, i.e., de-
scribed in terms of a spin wave expansion. This starts
with assuming a maximally polarized staggered magneti-
zation hMzi for the Lieb-Mattis measurement machine. By
linearizing the equations of motion, one then obtains the
spin waves that are characterized by a ‘‘plasmon’’ gap due
to the long range nature of the interactions. Stronger,
because of the infinite range of the interactions, their
spectrum is dispersionless, and it is easily demonstrated
that, in fact, the spin waves do not give rise to perturbative
quantum corrections to the staggered magnetization; from
this perspective, the classical Néel state appears to be an
exact eigenstate. It is now immediately clear what happens
at times t > t0. At t < t0 the system was prepared in a
product state of the spin singlet qubit and the N-spin Néel
ground state of the Lieb-Mattis antiferromagnet: j t<t0i �
j0iN � jqubiti. When at t � t0 the interaction between the
microsystem and macrosystem is switched on, the N � 2
spin system can be either in its Néel ground state j0iN�2 or
in an excited state where both spins a and b are misaligned
relative to the magnetization on the respective sublattices
with which they interact (Fig. 1). This state corresponds to
a two-magnon excited state, and, since the magnons do not
propagate, this excited state j2iN�2 also appears to be an
exact eigenstate. Hence, the semiclassical wave function is
simply j sc

t�t0i � 
j0iN�2 � j2iN�2�=
���
2

p
and the time evo-

lution at t > t0 is characterized by a coherent oscillation
between the two states. Since the state j2i is distinguish-
able from the ground state j0i, it is in principle measurable
by slowly switching on interactions with other environ-
mental degrees of freedom, and eventually the wave func-
tion will collapse. The outcome of this experiment would
be the usual Rabi oscillations, with a frequency that is
proportional to E2 � E0, the energy difference between
the two states. Thus, in a semiclassical description there
is no loss of quantum coherence.

One recognizes in the above the typical way that canoni-
cal measurement machines are conceptualized in quantum
measurement theory. The surprise is now that even for this
(in a sense, extremely ‘‘classical’’) Lieb-Mattis measure-
ment machine the preceding semiclassical analysis is exact
only when the machine is infinitely large. The construction
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turns out to be subtly flawed when N is finite and T > 0.
The culprit is the thin spectrum which is completely dis-
regarded in the semiclassical analysis. To reveal the deco-
hering effect of the thin spectrum, the Lieb-Mattis model
should be solved exactly. This can, in fact, easily be done
by first introducing the operator of total spin S � SA � SB.
Taking h � 0, the Hamiltonian can then be written as
�J=N��S2 � S2A � S2B� and accordingly the eigenstates are
jSA; SB; S;Mi where S, M denote total spin and its z axis
projection, while SA and SB refer to the total sublattice spin
quantum numbers. SA and SB are maximally polarized in
the ground state. Lowering SA or SB corresponds to excit-
ing a magnon carrying an energy J. One sees immediately
that the true ground state of the system is an overall S � 0
singlet, i.e., a state characterized by hMzi � 0. One also
infers the presence of a tower of total S states characterized
by an energy scale Ethin � J=N, and this is the thin spec-
trum. For a finite staggered magnetic field h, the situation
changes drastically; h couples the states in the thin spec-
trum, and it is easy to show that the ground state becomes a
wave packet of thin spectrum states and in this case Ethin �������
Jh

p
. This ground state does carry a finite staggered mag-

netization: it is the antiferromagnetic Néel state. One can
now straightforwardly demonstrate the singular nature of
the thermodynamic limit [6,10]. By sending first h! 0
and then N ! 1, one obtains the exact total singlet ground
state, respecting the spin rotational symmetry. Upon taking
the opposite order, one finds the fully polarized Néel anti-
ferromagnet of the semiclassical expansion.

Exact time evolution.—Let us now reconsider our quan-
tum measurement, taking full account of the thin spectrum
states (Fig. 2). For t < t0 the Lieb-Mattis machine is de-
scribed by the following thermal density matrix, assuming
that kBT � J so that magnon excitations can be neglected:
~J/N

thin

2

spectrum
thin

0

Energy level diagram

2J

state
two magnon 

state
zero magnon 

2,n

0,n

spectrum

FIG. 2 (color). Energy level scheme with the zero and two-
magnon states, each with its tower of thin spectrum states. The
level spacing in the thin spectrum is Ethin; magnons live on an
energy scale J.

23040
�t<t0 �
1

Z

XN�1

n�0

e�E
n
0=kBT j0;ni�jqubitih0;nj�hqubitj; (3)

where Z is the partition function, and the thin spectrum
states are labeled by n and have an energy En0 . Switching
on the Lieb-Mattis interaction between the qubits and the
machine’s sublattices at t � 0, we find that the density
matrix at t > t0 becomes

�t>t0 � U�t�t0U
y

�
1

2Z

XN�1

n�0

e�E
n
0=kBT
j0; nih0; nj � j2; nih2; nj

� e�i�E
n
2�E

n
0 ��t�t0�= �h�j0; nih2; nj � H:c:��; (4)

where U is the exact time evolution operator and the states
now describe the �N � 2�-particle Lieb-Mattis model.
Given their unobservable nature [6], we trace over the
thin spectrum states in this density matrix. The off-
diagonal matrix elements of this reduced density matrix
are now

�OD
t>t0 �

e�2iJ�t�t0�=�h

2Z

XN�1

n�0

e�E
n
0=kBTe�i�E

n
2�E

n
0�2J��t�t0�=�h; (5)

where the phase factor associated with the two-magnon
state is taken out of the summation. The absolute value
j�OD
t j is the measure for the time dependent entanglement

between states j0i and j2i. It can be evaluated exactly for
any given N, and the result is shown in Fig. 3. The vanish-
ing of this matrix element in the course of the time evolu-
tion signals decoherence, and we find that this is associated
with a characteristic time scale of a remarkably universal
nature: under the physical conditions that Ethin � kBT �
J and J=N < hN we find that the decoherence time due to
spontaneous symmetry breaking becomes completely in-
dependent of the energy scales characterizing the system:
tspon � 2�N �h=kBT, the result we announced in the
beginning.

The fact that the reduced density matrix at t > t0 de-
scribes a mixed state, while at t < t0 the system was in a
pure state, could lead to the conclusion that the present
mechanism for decoherence is irreversible. But irreversi-
bility is at odds with unitary time evolution. We actually do
find that after a certain time trec the system returns to a pure
state again, with exactly the same reduced density matrix it
started with at t � t0. Thus the decoherence is, in fact,
reversible; see Fig. 3. This recurrence time depends on the
energy scales of the Lieb-Mattis measurement machine in
a quite remarkable way: trec=tspon � kBT=Ethin. Under the
physical condition that the typical level splittings in the
thin spectrum are very small compared to temperature, the
recurrence takes infinitely long so that for all practical
purposes the thin spectrum acts as a truly dissipative bath
turning quantum information into an increase of classical
entropy.
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FIG. 3 (color). The time dependence of the entanglement
between states j0i and j2i, j�ODj, for different numbers of spins
N at T � 10 K and trec=tspon � 103. In the bottom figure the
decoherence time due to spontaneous symmetry breaking tspon
and the recurrence time trec are indicated.
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Origin of decoherence.—Given that decoherence via the
thin spectrum requires temperature to be finite, it is tempt-
ing to associate tspon with the thermal fluctuations of the
order parameter in the finite system, as described by spin
wave theory. However, this is not the case because these
thermal fluctuations invoke the thermal excitation of the
magnon states. These are exponentially suppressed by
Boltzmann factors e�J=�kBT�, which depend on the energy
scale J of the individual interactions. The origin of tspon is
more subtle: it is due to the hidden thin spectrum that
reflects the zero point fluctuations of the order parameter
as a whole. This thin spectrum does not carry any thermo-
dynamic weight, and turns into a heat bath destroying
quantum information if temperature is finite.

It is remarkable that the coherence time is such a uni-
versal time scale, independent of the detailed form of the
thin spectrum, which, after all, is determined by the pa-
rameters J and h in the Lieb-Mattis Hamiltonian.
Physically one can think of this universal time scale as
arising from two separate ingredients. First, the energy of a
thin spectrum state jni changes when magnons appear. The
change is of the order of nEthin=N, where Ethin is the
characteristic level spacing of the thin spectrum that we
happen to be considering. The fact that each thin state
shifts its energy somewhat at t > t0 leads to a phase shift
of each thin state, and in general these phases interfere
destructively, leading to dephasing and decoherence. The
larger nEthin=N, the faster this dynamics. But in order for
this dephasing to occur, it is necessary for a finite number
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of thin states to actually participate in the dynamics of
decoherence. Since temperature is finite (but always small
compared to the magnon energy) a finite part of the thin
spectrum is available for the dynamics. Thin spectrum
states with an excitation energy higher than kBT are sup-
pressed exponentially due to their Boltzmann weights. The
maximum number of thin states that do contribute is
roughly determined by the condition that nmax �
kBT=Ethin. Putting the ingredients together, we find that
the highest energy scale that is available to the system to
decohere is approximately kBT

Ethin

Ethin

N . All together, the thin
spectrum drops out of the equations. The fastest time scale
at which the dynamics take place is given by the inverse of
this energy scale, converted into time: one finds the deco-
herence time tspon �

2� �hN
kBT

.
Conclusions.—To what extent is the Lieb-Mattis ma-

chine representative of a general classical measurement
machine displaying a broken continuous symmetry? In
fact, the Lieb-Mattis machine is the best case scenario
for the kind of measurement machine envisaged in main
stream quantum measurement theory, as its behavior is
extremely close to semiclassical due to the presence of
the infinite range interactions. Machines characterized by
short range interactions carry massless Goldstone modes,
and these will surely act as an additional heat bath limiting
the coherence time. It is, of course, not an accident that the
most ‘‘silent’’ systems are qubits based on superconducting
circuitry, which have a massive Goldstone spectrum in
common with the Lieb-Mattis system. We have demon-
strated here that even under these most favorable circum-
stances quantum coherence eventually has to come to an
end, because of the unavoidable condition that even the
most classical measurement machines are subtly influ-
enced by their quantum origin. These effects become no-
ticeable in the mesoscopic realms, and we present it as a
challenge to the experimental community to measure tspon.
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