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We perform a large-scale Monte Carlo simulation of a dilute classical Heisenberg model with
ferromagnetic nearest neighbor and antiferromagnetic next-nearest neighbor interactions. We found
that the model reproduces a reentrant spin-glass transition. That is, as the temperature is decreased, the
magnetization increases rapidly below a certain temperature, reaches a maximum value, and then
disappears at some lower temperature. The low temperature phase was suggested to be a spin-glass

phase that is characterized by ferromagnetic clusters.
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Reentrant spin-glass (RSG) transition is a well-known
phenomenon of spin glasses (SGs). The RSG transition is
found near the phase boundary between the SG phase and
the ferromagnetic phase [1,2]. As the temperature de-
creases from a higher temperature, magnetization once
increases and then disappears at a lower temperature.
Finally, the SG phase is realized. The phenomenon was
first considered as a phase transition between a ‘“‘ferromag-
netic phase” and a “SG phase” [3]. However, neutron
diffraction studies have revealed that the “SG phase” is
characterized by ferromagnetic clusters [4—6]. Now the
RSG transition is believed to be a reentry from a ferromag-
netic phase to a frozen state with ferromagnetic clusters.

The mechanism responsible for this reentrant transition
has not yet been resolved. Two ideas have been proposed
for describing the RSG transition: (i) an infinite-range Ising
bond model, and (ii) a phenomenological random field
concept. Sherrington and Kirkpatrick solved the infinite-
range Ising bond model using a replica technique [7]. They
predicted the occurrence of the RSG phase transition be-
fore the RSG transition was observed experimentally [1].
However, successive studies of the model revealed that the
RSG phase transition does not occur [8], even when the
vector spins substitute for the Ising spins [9]. On the other
hand, the random field idea was proposed to explain ex-
perimental observations of neutron scattering functions
[4-6,10]. The essential point of that conception is that
the system is decomposed into a ferromagnetic part (FM
part) and a part with frustrated spins (SG part). At low
temperatures, the spins of the SG part yield random effec-
tive fields to the spins of the FM part. The FM order, which
grows at higher temperatures, vanishes because of a ran-
dom field effect [11]. Later, it was pointed out that not
random field but random anisotropy brings a RSG-like
phenomenon [12,13]. Nevertheless, no theoretical evi-
dence has yet been presented for this idea in a microscopic
point of view. In the last two decades, computer simula-
tions have been performed extensively to solve the RSG
transition in various models such as short-range bond
models [14-16], short-range site models [17,18], and a
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Ruderman-Kittel-Kasuya- Yoshida model [19,20].
However, no realistic model has been shown to reproduce
the vanishing magnetization that grows at higher
temperatures.

This Letter reports a dilute classical Heisenberg model
that reproduces a RSG transition. That is, the magnetiza-
tion increases rapidly below a certain temperature, then
disappears at some lower temperature. The low tempera-
ture phase was suggested to be a SG phase, which is
characterized by ferromagnetic clusters. It should be em-
phasized that no novel mechanism is necessary to repro-
duce the RSG transition. The model studied here is a
natural one that was proposed experimentally [21] and
investigated using a Monte Carlo (MC) method [17]. A
large-scale MC simulation revealed the nature of the
model. We believe that the system size is crucial for
eliminating the magnetization, because the SG phase at
low temperatures is composed of ferromagnetic clusters.

We start with a dilute Heisenberg model with competing
nearest and next-nearest neighbor exchange interactions
described by the Hamiltonian:
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where S; is the classical Heisenberg spin of |S;| = 1;
J1(>0) and J,(>0), respectively, represent the nearest
neighbor and the next-nearest neighbor exchange interac-
tions; x; = 1 or 0 when the lattice site i is occupied,
respectively, by a magnetic or nonmagnetic atom. The
average number of x(= (x;)) is the concentration of a
magnetic atom. Note that an experimental realization of
this model is Eu,Sr;_, S [21], in which magnetic atoms
(Eu) are located on the fcc lattice sites [22]. Here, for
simplicity, we consider the model on a simple cubic lattice
with J, = 0.2/, [23].

A computer simulation was performed using a conven-
tional heat bath MC method. The system was cooled
gradually from a high temperature (cooling simulation).
We calculated the magnetization M defined as M =
[(M(s))], where M(s)(= |X;x;S;]) is the magnetization at
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FIG. 1. Magnetizations M in the 32 X 32 X 32 lattice for
various spin concentrations x.

the sth MC step, and (- - -) represents a MC average and
[- - -] a sample average. Here, for larger lattices, 200 000
MC steps (MCS) were allowed for relaxation; data of
successive 200000 MCS were used to calculate average
values. We show later that these MCS are sufficient for
studying equilibrium properties of the model at a tempera-
ture range within which the RSG behavior is found. We
made a simulation for x > 0.70. We treated lattices of L X
L X L (L =8-48) with periodic boundary conditions.
Numbers N, of samples with different spin distributions
are Ny, = 1000 for L = 12, Ny, = 600 for L = 16, Ny =
200 for L = 24 and 32, and N, = 80 for L = 48. We
measured the temperature in the unit of J; (kg = 1).
Figure 1 shows temperature dependencies of the mag-
netization per spin M /xN for various x, where N(= L?) is
the number of lattice sites. For x = 1, as the temperature
decreases, M increases rapidly below a temperature reveal-
ing the occurrence of a ferromagnetic phase. As x de-
creases, M exhibits an interesting behavior. In the range
of 0.78 = x = 0.85, M once increases, reaches a maxi-
mum value, and then decreases. Such behavior of M is
reminiscent of the occurrence of the RSG transition.

To examine this phenomenon, we made detailed studies
in the case of x = 0.80. First, we note that we performed a
complementary simulation. That is, starting with a random
spin configuration at a low temperature, the system is
heated gradually (heating simulation). In addition, we in-
vestigated M in the ground state for smaller lattices (L =
16) having used a hybrid genetic algorithm [24]. Figure 2
shows temperature dependencies of M in both cooling and
heating simulations for various L together with the value of
M in the ground state. For 7T = 0.1J;, data of the two
simulations almost coincide mutually, even for large L.
We thereby infer that M for T = 0.1J; are of thermal
equilibrium. On the other hand, for 7 <<0.1J;, a great
difference in M is seen between the two simulations;
estimation of the equilibrium value is difficult. We specu-
late that the heating simulation gives a value of M that is
similar to that in the equilibrium state because the data in
the heating simulation seem to connect to those in the
ground state.

Figure 2 shows that the lattice size dependence of M is
remarkable. For smaller L, as the temperature decreases, M
decreases slightly at very low temperatures. The decrease
is enhanced as L increases. Consequently, a strong size
dependence of M is indicated for T =< 0.1J;. Particularly in
the ground state, M apparently decreases rapidly as L
increases. These facts imply that M disappears at low
temperatures as well as at high temperatures.

We investigated the Binder parameter g,
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to examine whether or not the ferromagnetic phase actually
occurs within an intermediate temperature range. Figure 3
shows g;’s for various L [25]. We can see that g;’s for
different L cross at two temperatures T¢ and Ty ( < T¢).
The cross at T/J; = 0.265 = 0.010 is a usual one that is
found in the ferromagnetic phase transition [26]. That is,
for T > T¢, g; for a larger size is smaller than that for a
smaller size; for T < T, this size dependence in g; is
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FIG. 2. Magnetizations M for x =0.80 in the L X L X L 0.05 0.1 015 02 025 03 035 04
lattice. Open symbols indicate M in the cooling simulation ™,
and filled symbols that in the heating simulation. Data at T =
0 indicate those in the ground state. FIG. 3. Binder parameters g; for x = 0.80.
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T <Tg, g; for a larger size again becomes smaller than
that for a smaller size. Interestingly, the cross for different
g1, occurs at almost the same temperature of Tr/J, =
0.125 £ 0.005 [26]. These facts suggest that, as the tem-
perature is decreased beyond Ty, the ferromagnetic phase,
which occurs below T, disappears.

Does the spin correlation function below Ty decay rap-
idly as the distance between two spins increases? If it
decays according to the power law, then [(M(s)?)]/xN
L?>~7 with 7 being the decay exponent of the spin corre-
lation function. We plot, in Fig. 4, [(M(s)?)]/xN as a
function of L in a log-log form at various temperatures.
In fact, at a temperature just below Ty (T/J; = 0.10), data
seem to lie on a straight line; the spin correlation function
will decay algebraically. Different L dependences are
found above and below this temperature. At higher tem-
peratures (T > Tg), as L is increased, data deviate upward
from the straight line being compatible with the fact that
the ferromagnetic long range order occurs at these tem-
peratures. On the other hand, data deviate downward at
lower temperatures. That is, the spin correlation function
decays exponentially, similar to that in the SG phase.

Is the SG phase realized at low temperatures? A con-
vincing way of examining the SG phase transition is a finite
size scaling analysis of the correlation length, &;, in
samples of different sizes L [27,28]. Data for the dimen-
sionless ratio &; /L are expected to intersect at T = Tgg.
Here we consider the correlation length of the SG compo-
nent of the spin, i.e., S;(= S; — m) with m being the
ferromagnetic component of m = 3,x;S;/(xN). We per-
formed a cooling simulation of a two-replica system with
{S;} and {T;} [29]. The SG order parameter, generalized to
wave vector k, g#¥(k), is defined as
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FIG. 4. The square of the magnetization [(M(s)?)]/xN vs L.
The straight line at 7 = 0.1J; is obtained in the least square for
smaller lattices of L = 16. For T = 0.07J,, open symbols in-
dicate those in the cooling simulation and filled symbols repre-
sent those in the heating simulation. Data in both simulations
deviate downward from the straight line.

where w, v = x, y, z. From this, we determine the wave
vector dependent SG susceptibility ysg(k) by

xsak) = xNS (g ()] 4)
T87%
The SG correlation length is then determined from

92 (&)

_ 1 Xsg(0) | 1/2
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where k., = 27/L,0,0).

Figure 5 shows the temperature dependence of &; /L for
various L. In fact, &, /L for different L intersect at T ~
0.10J,. In particular, data for L = 12 are scalable on the
assumption that Tgg/J; = 0.105 = 0.003. On the basis of
this fact together with the rapid decay of the spin correla-
tion function, we inferred that the SG phase is realized at
low temperatures. The SG transition temperature Tqg esti-
mated here is slightly lower than 7y [30]. However, the
possibility of TR = Tgg cannot be ruled out, because the
treated lattices of L = 20 for estimating Ty are not large
enough.

We considered the spin structure. Figures 6(a) and 6(b)
show typical results for it. In the ferromagnetic phase
[Fig. 6(a)], although the spin arrangement is considerably
modulated, a ferromagnetic spin correlation extends over
the lattice. On the other hand, in the SG phase [Fig. 6(b)],
we can see that the system breaks up to yield ferromagnetic
clusters with a linear size of /. ~ 7 [31]. This result is
compatible with the size dependence of M shown in Fig. 2.
In the small lattice with L = 8, M does not exhibit a
marked decrease at T < Tgg. The decrease becomes dras-
tic when L is increased. This fact is further evidence that
the system is divided into ferromagnetic clusters. We sug-
gest that the SG phase of the model is characterized by
ferromagnetic clusters. This concept is compatible with
experimental observations [4—6].
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FIG. 5. The SG correlation length &; divided by L. The data
intersect at T ~ 0.10J;, implying that there is a SG transition at
this temperature. The inset shows a typical example of the
scaling plot for L = 12.
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FIG. 6 (color). Spin structures of the model for x = 0.80 on a
plane of the 32 X 32 X 32 lattice in (a) the ferromagnetic phase
and (b) the spin-glass phase. Spins represented here are those
averaged over 10000 MCS. The positions of the nonmagnetic
atoms are represented in white.

In summary, we found a model that settles the most
important issue of the RSG transition. Other important
issues remain unresolved. Why does the ferromagnetic
phase disappear at low temperatures? Does this dilute
model exhibit the same behavior as that found in the
bond SG model [28,32]? Does the chiral glass phase tran-
sition simultaneously occur at Tgg [33]?7 We intend the
present model as one means to solve those and other
remaining problems.

The authors are indebted to Professor K. Motoya for
directing their attention to this problem of the RSG tran-
sition and for his valuable discussions. The authors thank
Professor T. Shirakura for his useful suggestions and
Professor K. Sasaki for a critical reading of the manuscript.
This work was financed by a Grant-in-Aid for Scientific
Research from Ministry of Education, Science and Culture.

[1] B.H. Verbeek, G.J. Nieuwenhuys, H. Stocker, and J. A.
Mydosh, Phys. Rev. Lett. 40, 586 (1978).

[2] For example, K. Binder and A.P. Young, Rev. Mod. Phys.
58, 801 (1986); J.A. Mydosh, Spin Glasses: An
Experimental Introduction (Taylor & Francis, London,
Washington, DC, 1993).

[3] Y. Yeshurun, M.B. Salamon, K. V. Rao, and H.S. Chen,
Phys. Rev. Lett. 45, 1366 (1980).

[4] H. Maletta, G. Aeppli, and S. M. Shapiro, Phys. Rev. Lett.
48, 1490 (1982).

[5] G. Aeppli, S. M. Shapiro, R.J. Birgeneau, and H. S. Chen,
Phys. Rev. B 28, 5160 (1983), and references therein.

[6] K. Motoya, S. M. Shapiro, and Y. Muraoka, Phys. Rev. B
28, 6183 (1983).

[7]1 D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,
1792 (1975).

[8] G. Toulouse, J. Phys. (Paris), Lett. 41, L.447 (1980).

[91 M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201
(1981).

[10]

(11]
[12]

[13]
[14]

[15]
[16]
(17]
(18]
[19]
[20]

(21]
(22]

(23]

[26]

(27]
(28]

[29]

[30]

(31]

(32]

(33]

227202-4

M. Arai, Y. Ishikawa, and H. Takei, J. Phys. Soc. Jpn. 54,
2279 (1985).

Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).
E. M. Chudnovsky, W. M. Saslow, and R. A. Serota, Phys.
Rev. B 33, 251 (1986).

R. Fisch, Phys. Rev. B 62, 361 (2000).

Y. Ozeki and H. Nishimori, J. Phys. Soc. Jpn. 56, 1568
(1987).

F. Matsubara, T. Iyota, and S. Inawashiro, J. Phys. Soc.
Jpn. 60, 4022 (1991).

M. J. P. Gingras and E. S. Sgrensen, Phys. Rev. B 46, 3441
(1992), and references therein.

K. Binder, W. Kinzel, and D. Stauffer, Z. Phys. B 36, 161
(1979).

F. Matsubara, T. Tamiya, and T. Shirakura, Phys. Rev.
Lett. 77, 378 (1996).

F. Matsubara and M. Iguchi, Phys. Rev. Lett. 68, 3781
(1992).

F. Matsubara, K. Morishita, and S. Inawashiro, J. Phys.
Soc. Jpn. 63, 416 (1994).

H. Maletta and W. Felsch, Phys. Rev. B 20, 1245 (1979).
In fact, Binder et al. [17] already studied the model on an
fcc lattice with up to N = 163 lattice sites, but could not
find a decrease of magnetization that grows at higher
temperatures.

Coordination numbers of the nearest and the next-nearest
neighbor lattice sites are z; = 12 and z, = 6 in the fcc
lattice, and z; = 6 and z, = 12 in the sc lattice. In that
case, we choose the smaller ratio of J,/J; = 0.2 instead of
J»/J; ~ 0.5 in Eu,Sr;_,S.

F. Matsubara, T. Shirakura, S. Takahashi, and Y. Baba,
Phys. Rev. B 70, 174414 (2004).

Values of g; depend strongly on the sample number N,
especially at low temperatures (7 < 0.15J;). Figure 3
shows g; only when two restrictions are satisfied:
(i) gy s for both cooling and heating simulations mutually
coincide; and (ii) g; for N, is not changed considerably
from that for N,/2.

The error bar given here merely means scattering of the
crossing temperatures.

H. G. Ballesteros et al., Phys. Rev. B 62, 14237 (2000).
L.W. Lee and A.P. Young, Phys. Rev. Lett. 90, 227203
(2003).

R.N. Bhatt and A.P. Young, Phys. Rev. Lett. 54, 924
(1985).

This is possible if the ferromagnetic order parameter m
and the SG order parameter decouple from each other. The
difference in the transition temperatures of Ty (= TR)
and Tsg was reported in the magnetic alloy of Fey;Alg 3
[6].

We have estimated the correlation length of & ~ 3.5 using
the function of (§,S,) = aexp(—r/&)/r't" + m? with a
and m being constants; the domain size of [. ~2& ~ 7.
F. Matsubara, T. Shirakura, and S. Endoh, Phys. Rev. B 64,
092412 (2001).

L. Berthier and A.P. Young, Phys. Rev. B 69, 184423
(2004), and references therein.



