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Spin-Orbit-Driven Coherent Oscillations in a Few-Electron Quantum Dot
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We propose an experiment to observe coherent oscillations in a single quantum dot with the oscillations
driven by spin-orbit interaction. This is achieved without spin-polarized leads, and relies on changing the
strength of the spin-orbit coupling via an applied gate pulse. We derive an effective model of this system
which is formally equivalent to the Jaynes-Cummings model of quantum optics. For parameters relevant
to an InGaAs dot, we calculate a Rabi frequency of 2 GHz.
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Motivated by the desire for a closer understanding of
quantum coherence and by the drive to develop novel
quantum computing architecture, a number of break-
through solid-state experiments have focused on coherent
oscillations—the back and forth flopping of that most
fundamental of quantum objects, the two-level system
[1–4]. The pioneering work of Nakamura et al. with the
coherent superposition of charge states of a Cooper-pair
box [1] first demonstrated the possibility of observing such
oscillations in a wholly solid-state device, thus sparking
the remarkable progress in qubit development in super-
conducting systems [2,3].

The important double quantum dot experiment of
Hayashi and co-workers [4] showed that coherent oscilla-
tions could also be observed in normal semiconductor
systems. It is the purpose of this Letter to propose an
experiment in which coherent oscillations are observed in
a single quantum dot (QD), with these oscillations being
driven by the spin-orbit (SO) interaction.

The SO interaction in semiconductor heterostructures
has its origin in the breaking of inversion symmetry, and
is increasingly coming to be seen as a tool with which to
manipulate electronic states; see, e.g., [5]. The grandfather
of these ideas is the spin transistor of Datta and Das [6], in
which the SO interaction causes electron spins to precess
as they move through a two-dimensional electron gas
(2DEG). In materials where the structural inversion asym-
metry dominates, e.g., InGaAs, the SO interaction can be
described by the Rashba Hamiltonian [7]
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In this Letter we consider the effects ofHSO on electrons
in a small, few-electron lateral quantum dot. Although such
dots are yet to be realized in materials with strong SO
coupling, there is currently a considerable effort to develop
nanostructures in such materials [8]. Our interest here is
not in open or chaotic QDs [9,10], but rather in small dots
in the Coulomb blockade regime.
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Such dots have been studied by a number of authors [11–
13], but our analysis differs in a crucial respect: by making
an analogy with quantum optics, we are able to derive an
approximate Hamiltonian that captures the essential phys-
ics of the dot. This model is formally identical to the
Jaynes-Cummings (JC) model [14], first derived in the
context of the atom-light interaction. Here, the roles of
the atomic pseudospin and light field are played by the spin
and orbital angular momentum of the electron, respec-
tively. The system then naturally decomposes into a set
of two-level systems (TLS), any of which may be consid-
ered as the qubit degree of freedom within which coherent
oscillations can occur. These oscillations are genuine Rabi
oscillations [15], with orbital and spin degrees of freedom
exchanging excitation. This ‘‘spin-orbit pendulum’’ behav-
ior has been noted in three-dimensional models in nuclear
physics [16].

Having elucidated the origin and properties of the TLS,
we then describe an experimental scheme through which
the coherent oscillations can be investigated. The key
problem here is that of injecting into, and reading out
from, states which are not eigenstates of the SO coupled
system. In the Hayashi experiment [4], this was achieved
through the spatial separation of the two dots, which makes
the leads couple to the localized left and right states, rather
than to the bonding and antibonding eigenstates. In our
single dot system, the direct analogy of this would be the
injection of spin-polarized electrons. Given the difficulty
of interfacing ferromagnetic leads with semiconductors
[8], we avoid their use by exploiting the fact that the
strength of the SO interaction can be controlled by external
gates [17–19].

Our starting point is the Fock-Darwin theory of a single
electron in a 2DEG with parabolic confinement of energy
�h!0 [20],
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where m is the effective mass of the electron. Applying a
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FIG. 1 (color online). Spectral features of the Rashba-coupled
quantum dot as a function of magnetic field. The parameters
used are typical of InGaAs: g � �4, m=me � 0:05 with dot size
l0 � 150 nm. Resonance occurs at B0 � 90 mT. (a) Low-lying
excitation spectrum for spin-orbit coupling � � 0:8�
10�12 eVm. (b) Lowest-lying anticrossing. The thick line is
the JC model showing anticrossing width �0 at � � 0, and the
thin line is the exact numerical result. (c) Plot of width �n
against central energy of anticrossing with the dot on resonance
for different � in the range �0:3–2:0� � 10�12 eVm. The exact
numerical results (circles) show excellent agreement with the
square-root behavior predicted by the JC model in this � range.
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perpendicular magnetic field in the symmetric gauge, in
second quantized notation we have

H0 � �h ~!�ayx ax � ayy ay � 1� �
�h!c

2i
�aya

y
x � axa

y
y �; (3)

with !c � eB=mc and ~!2 � !2
0 �!2

c=4. The introduc-
tion of a	 � 2�1=2�ax 
 iay� decouples the system into
eigenmodes of frequency !	 � ~!	!c=2.

We now include the Rashba interaction of Eq. (1), for
which the coupling strength � is related to the spin pre-
cession length lSO � �h2=2m�. With magnetic length lB �����������������
�h=m!c

p
, we have
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p
.

Adding the Zeeman term, in which we take g to be
negative as in InGaAs, performing a unitary rotation of
the spin such that �z ! ��z and �	 ! ��
, and rescal-
ing energies by �h!0, we arrive at the Hamiltonian
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where l0 �
����������������
�h=m!0

p
is the confinement length of the dot

and Ez � jgjm=�2me��lB=l0�
2 is the Zeeman energy with

me the bare mass of the electron.
This single-particle picture is motivated by the good

agreement between Fock-Darwin theory and experiment
in the non-SO case [20], and by studies which have shown
that many-body effects in QDs play only a small role at the
magnetic fields we consider here [11,12,21].

We now derive an approximate form of this Hamiltonian
by borrowing the observation from quantum optics that the
terms preceded by �� in Eq. (5) are counterrotating, and
thus negligible under the rotating-wave approximation [15]
when the SO coupling is small compared to the confine-
ment. This decouples the !� mode from the rest of the
system, giving H � !�n� �HJC where

HJC��� � !�a
y
�a� � 1

2Ez�z � ��a��� � ay����; (6)

with � � l20��=2~llSO. This is the well-known Jaynes-
Cummings model (JCM) of quantum optics. It is com-
pletely integrable, and has ground state j0; #i with energy
EG � �Ez=2 independent of coupling. The rest of the
JCM Hilbert space decomposes into two-dimensional
subspaces fjn; "i; jn� 1; #i; n � 0; 1; . . .g. Diagonaliza-
tion in each subspace gives the energies E�n;	�

� �
�n� 1=2�!� 	�n=2 with detuning � � !� � Ez and

�n �
�����������������������������������
�2 � 4�2�n� 1�

p
. The eigenstates are

j �n;	�
� i � cos��n;	�

� jn; "i � sin��n;	�
� jn� 1; #i; (7)

with tan��n;	�
� � ��	 �n�=2�

����������������
�n� 1�

p
.
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Figure 1(a) shows a portion of the excitation spectrum
obtained by exact numerical diagonalization for a typical
dot in InGaAs. The approximate HJC describes the energy
levels of the system to within 10% of the typical anticross-
ing width and 1% of !0. This small discrepancy is visible
in Fig. 1(b). In the following, we are concerned only with
the lowest-lying energy states in the dots. Without SO
interaction, these states are described by n� � 0, indicat-
ing that the states converge to the lowest Landau level in
the high-field limit, and by n� corresponding to the quan-
tum number of angular momentum. The SO interaction
thus couples two states of adjacent angular momentum and
opposite spin. The detuning � uniquely identifies !c for
fixed material parameters and dot size.

Under the assumptions of the constant interaction model
[20], the most important prediction of this model for linear
transport is that, with the dot on resonance, the addition-
energy spectrum for the first few electrons (up to 18 here) is
described by a sequence of well separated anticrossings,
the width of which increases as �

������������
n� 1

p
. This behavior is

shown in Fig. 1(c), and its observation would be confirma-
tion of our JC model, and would permit a determination of
� in quantum dots.

We now describe the procedure for observing spin-orbit-
driven Rabi oscillations. Our proposal is somewhat similar
to that of Nakamura [1] with a voltage pulse driving the
system, but with the crucial difference that the oscillations
here are induced not by a change in the detuning, but by a
change in the SO coupling strength. We operate in the
3-2
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nonlinear transport regime and address a single two-level
system by being near resonance and by tuning the chemical
potentials of the leads close to the nth anticrossing. The SO
coupling is set to �1 and the states taking part in the
oscillation are eigenstates of HJC��1�, namely  	

�1
, which

are situated symmetrically around the chemical potential
of the right lead�R; see Fig. 2(a). The temperature is taken
smaller than the detuning kBT � � to avoid the effects of
thermal broadening. Assuming Coulomb blockade and
considering first-order sequential tunneling only, electrons
can either tunnel from the left lead into the dot via state  �

�1

and subsequently leave to the right or, alternatively, tunnel
to state  �

�1
blockading the dot; see Fig. 2(b). Assuming

tunneling through the left or right barrier at a constant
rate �L=R, we set �L > �R to assure that the dot is prefer-
entially filled from the left, thus maximizing the cur-
rent. On average then, the dot is initialized in state  �

�1

for times ti > ��1
R .

Having trapped an electron in this state, we apply a
voltage pulse to the gate. This has two effects. First, this
change in voltage alters the SO coupling to a new value �2.
Since this change is performed nonadiabatically, the elec-
tron remains in the initial eigenstate  �

�1
until Rabi oscil-

lations begin between this state and  �
�1

under the influence
of the new HamiltonianHJC��2�. Second, the TLS is drawn
(c) (d)
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FIG. 2 (color online). Configuration of the dot in the various
stages of the cycle. (a) The positions of the dot levels  	

�1
,

chemical potentials �L;R, and the tunneling rates �L > �R.
(b) The coupling is initially �1. On average, for times ti >
��1
R the dot will be initialized in state  �

�1
. (c) The applied

voltage pulse lowers the dot levels and nonadiabatically changes
the coupling to �2 � �1, thus inducing Rabi oscillations.
(d) Pulse is switched off after time tp and the levels return to
their initial places. Tunneling to the right occurs when the
electron has oscillated into the upper state. Relaxation rates
�1;2 are also shown.
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below both chemical potentials, assuring that oscillations
can occur without tunneling out of the dot; see Fig. 2(c).

After a time tp, the gate voltage is returned to its initial
value, and the TLS resumes both its original position and
coupling �1, as in Fig. 2(d). Tunneling out of the dot can
now occur, provided that the electron is found in the upper
state, which happens with a probability given by the over-
lap of the oscillating wave function at time tp with the
upper level,

P�tp� � jh �
�1
j��tp�ij2 � jh �

�1
je�iH��2�tp j �

�1
ij2: (8)

This process is operated as a cycle and the current is
measured. From probability arguments we see that I �
e�RP�tp�, where we have used the simplification that
��1
R > tp, ��1

L . Thus, by sweeping tp we are able to image
the time evolution of Rabi oscillations, just as in the
previous experiments of Nakamura and Hayashi.

The singular case of a nonadiabatic change in � from
zero to a finite value produces oscillations with the maxi-
mum possible amplitude, Pmax � 1. However, in realistic
systems only changes between finite values of � are fea-
sible. This leads to a reduction in the amplitude, and
achieving a significant oscillation signal requires a suitably
large change in �. In experiments with 2DEGs, changes in
� of a factor of 2 are reported, and in a recent Letter by
Koga et al., � was shown to vary in the range �
�0:3–1:5� � 10�12 eVm (a factor of 5) in one InGaAs
sample [19]. Grundler [18] has shown that the large
back-gate voltages usually used to change � can be dras-
tically reduced by placing the gates closer to the 2DEG.
Thus, it is conceivable that changes in � of a factor
FIG. 3 (color). Characteristics of the Rabi oscillation.
(a) Probability P�tp� of finding an electron in the upper level
after time tp following the nonadiabatic change �1 � 1:5 !

�2 � 0:3� 10�12 eVm as a function of magnetic field. (b) Am-
plitude of oscillation as a function of B=B0 for changing from
�1 � 1:5, 0.8, 0.6 to �2 � 0:3� 10�12 eVm (top to bottom).
(c) Phonon-induced relaxation rate for InAs parameters � �
1:5� 10�12 eVm, P�3:0�10�21 J2=m2, %�5:7�103 kg=m3,
c � 3:8� 103 m=s. Close to B0 the rate is suppressed to
�ep < 10�7!0.
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between 2 and 5 could be produced with voltages small
enough to be pulsed with rise times substantially shorter
than a typical coherent oscillation period.

In Fig. 3(a) we plot time traces of the transition proba-
bility P�tp� calculated for the first anticrossing as a func-
tion of magnetic field. We have used the values �1�
1:5�10�12 eVm and �2 � 0:3� 10�12 eVm from the
Koga experiment [19]. The amplitude of the oscillations
Pmax for different ratios of �2=�1 is presented in Fig. 3(b),
which shows a node at B � B0 (� � 0). This is because,
for � � 0, the eigenstates of JCM are 2�1=2�jn; "i 	
jn� 1; #i� for all � � 0. Therefore, a finite detuning is
required to obtain the maximum amplitude, which concurs
with � > kBT, �R to overcome broadening effects. Both
the amplitude Pmax and frequency $ show nontrivial de-
pendencies on �1 and �2 as well as on the magnetic field.
This latter behavior stems from the parametric dependence
on B of all three parameters in HJC.

For our model parameters with �2=�1 � 1=5 and with
the detuning set such that the amplitude is maximized, we
have Pmax � 0:45 with a Rabi frequency of $ � 2 GHz,
which corresponds to a period of about 3 ns. This is within
accessible range of state-of-the-art experimental tech-
nique. Note that the period can be extended by using
weaker confinement and SO coupling.

For both the observation of coherent oscillations and
the operation as a qubit, it is essential that the lifetime
of state  �

� is long. This is the case for a pure electronic
spin in a QD [8,22], and we now show that the hybridiza-
tion of the spin with the orbitals, and the ensuing inter-
action phonons, does not affect this. We assume a piezo-
electric coupling to acoustic phonons via the potential
Vep � �qeiq�r�bq � by�q�, with phonon operators bq and
j�qj

2 � �hP=2%cqV , with coupling P, mass density %,
speed of sound c, and volume V [23]. For n � 0, a golden
rule calculation yields the rate

�ep=!0 �
mP

8*� �h!s�
2%l0

���
2

p
l0
~l

sin2��sin2��,5I�,�; (9)

with !s � c=l0, , � 2�1=2�~l=l0���= �h!s�, and I�,� �
8=15. Close to B0, ,� 1, and thus the rate is extremely
small �ep � 104 s�1 [Fig. 3(c)]. Therefore, the robustness
of spin qubits is not significantly weakened by the SO
hybridization.

In general, residual relaxation affects our measurement
scheme in two ways. During the oscillation [Fig. 2(c)], the
system may relax to the eigenstate  �

�2
. This damps the

oscillation by a factor exp���1tp� to the constant value
I � e�RPmax=2. Relaxation during the readout phase
[Fig. 2(d)] simply reduces the overall amplitude of the
signal by a factor exp���2=�R�. Clearly then, to observe
oscillations, we require �1 <$ and �2 < �R.

In summary, we have outlined a proposal for the obser-
vation of spin-orbit-driven coherent oscillations in a single
quantum dot. We have derived an approximate model,
22680
inspired by quantum optics, that shows the oscillating
degree of freedom to represent a novel, composite spin-
angular momentum qubit.
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