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Nonlocal Screening, Electron-Phonon Coupling, and Phonon Renormalization in Metals
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A method for calculating the phonon self-energy in metals arising from the coupling between phonons
and electrons near the Fermi surface is developed. The essence of this scheme is the separation of the
inter- and intraband parts of the electron polarizability. The intraband contribution provides extra
screenings and is closely related to the electron-phonon coupling and phonon softening in metals.
Applications of this scheme to phonons in MgB2 give excellent results when compared with experiments
and previous theoretical work. In addition, both electron and hole dopings are found to reduce the
renormalization effect of the E2g phonon mode, which indicates a weakened electron-phonon coupling in
the doped systems.
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Coupled electron-phonon (e-ph) systems are one of the
most widely studied many-body problems. Interactions
between electrons and phonons are responsible for a vari-
ety of interesting physical phenomena. For example, the
effective (attractive) interaction between electrons near the
Fermi surface arising from the exchange of virtual phonons
is responsible for conventional superconductivity. The po-
tential role such an interaction might play in the high tran-
sition temperature (Tc) cuprates is still under intensive in-
vestigation. In addition, electron-phonon interactions con-
tribute to the finite lifetime of phonons and electrons and
renormalize their energy. For phonon modes that are
strongly coupled with electrons, the renormalization of the
phonons could be significant, resulting in softened phonons
in certain regions of the Brillouin zone (BZ). Allen and
Cohen [1] studied this renormalization by comparing pho-
non spectra of TaC and HfC, two similar materials which
differ greatly in Tc, and related the extra phonon softening
in TaC to the e-ph coupling constant. This subject was dis-
cussedinmoredetail subsequently [2–4]. Recently, the dis-
covery [5] of the unexpectedly high Tc in MgB2 has ignited
renewed interest in phonon-mediated superconductivity
[6–11]. It is now generally accepted that the extremely
strong coupling between E2g phonons and p� electrons is
responsible for the surprisingly high Tc. Therefore, it
would be interesting to study the e-ph coupling induced
phonon renormalization in this material and its derivatives.

In this Letter, we suggest a scheme for calculating the
phonon renormalization in metals from first principles.
This method is based on the observation that the electronic
polarizability in metals consists of both inter- and intra-
band contributions. Accordingly, the phonon self-energy
can be separated into these contributions. The intraband
contribution accounts for an extra renormalization in met-
als. Furthermore, since this phonon self-energy is defined
with respect to an ‘‘insulating’’ system, the magnitude of
such renormalization relates directly to the strength of the
e-ph coupling in the corresponding metallic system. Note
that by ‘‘intraband’’ we mean contributions from all Fermi-
05=94(22)=225502(4)$23.00 22550
surface electrons. Another advantage of the present for-
mulation is that the e-ph coupling matrix elements are not
calculated explicitly and the computational cost is greatly
reduced compared to usual perturbation approaches. In the
study of coupled electron-phonon systems, it is often de-
sirable to identify phonon modes that couple strongly with
electrons. In this regard, the present formulation provides a
convenient method for searching for such modes if they
exist. Application of this technique to MgB2 shows enor-
mous but expected renormalization of the E2g phonons due
to the extremely strong e-ph coupling in this system. More
interestingly, we find that both electron and hole doping
reduce the e-ph coupling strength in this system, which
explains the fact that, despite much effort, undoped MgB2

still holds the record for highest Tc.
In a coupled electron-phonon system, the phonon dy-

namical matrix, or equivalently, the second derivative of
the total energy, consists of three contributions: [12–15]
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where R
i denotes the 
 Cartesian coordinate of the ith ion.
Here Eion and V ion are the ion-ion interaction energy and
electron-ion potential, respectively, and n�r� is the elec-
tronic charge density. The first and second terms of the
right-hand side of Eq. (1) are of electrostatic origin which
can be combined to define ‘‘bare’’ phonon energies. The
last term is the electron-phonon contribution to the phonon
energy and is the focus of our discussion. Within linear
response theory, the electronic charge response to an ex-
ternal perturbation 
Vext can be expressed as:
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Z
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Z
�0�r; r0�
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FIG. 1. Renormalized (solid line) and unrenormalized (dashed
line) E2g phonon energies in MgB2 as a function of doping level.
Symbols indicate calculated values and the curves are a guide for
the eyes.
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where � is the full response function and �0 the (irreduc-
ible) polarizability; Vscf is the self-consistent Kohn-Sham
potential. For an insulating system, the charge response
may be regarded as arising from changes in electronic
wave functions as a result of lattice distortions: [16]


n�r� �
X
i

fi� �
i �r�
 i�r� � c:c:�; (3)

where fi is the Fermi occupation factor. The connection
between Eqs. (2) and (3) can easily be seen by noting that
the change in wave functions responding to a phonon
distortion is
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In metals, however, the existence of the Fermi surface
provides additional screening: [15,17,18]
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The second term in the above expression accounts for
changes in electron occupation numbers in response to
lattice perturbations. We shall call this metallic screening
to be distinguished from the screening arising from the
distortion of wave functions. This is equivalent to stating
that the electronic polarizability in metals has both inter-
and intraband contributions:
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It is therefore reasonable to separate the two contributions
to the polarizability; the intraband contribution is due to
the existence of the Fermi surface and is responsible for the
extra phonon softening in metals. Another interesting ob-
servation is that, since this extra screening in metals is a
result of the redistribution of electrons, it is fairly nonlocal,
as will be discussed in more detail later. Combining
Eqs. (1), (2), and (6), we define the phonon renormalization
in metals:
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X
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�V ion

�Q
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�Vscf
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where M and Q are the mass and the generalized coordi-
nate associated with the phonon mode of interest, and ! is
the true (renormalized) phonon energy in metals. The
Dirac delta function ���i� ensures that only electrons
near the Fermi surface contribute to the phonon renormal-
ization in the present definition. We introduce a reference
phonon energy!0 for the corresponding insulating system,
which can easily be evaluated with either frozen phonon or
linear response approaches with band occupation numbers
frozen. Note that !0 would have been the true phonon
energy if there were no couplings to the electrons near the
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Fermi surface, as in the case of insulators. Here we assume
that the reference and renormalized phonons have the same
polarization vector. Note that !0 includes all electronic
effects except the coupling with the Fermi-surface elec-
trons. Therefore, !0 may be regarded as the bare phonon
energy with respect to the e-ph coupling in metals. The
renormalization 
�!2� is then evaluated by taking the
difference between the true phonon energy !2 and the
reference one !2

0. Denoting 
V � 1��������
2M!

p �V
�Q , we have


�!2� � 2!
X
i

���i�h ij
Vionj iih ij
Vscfj ii: (8)

Equation (8) clearly shows the e-ph coupling effects on the
phonon energy. The stronger the coupling, the greater the
renormalization.

We now apply the above formulation to phonons in
MgB2. Since the discovery [5] of the surprisingly high Tc
in MgB2, much work has focused on searching for systems
with higher Tc using MgB2 as a template. It was observed
that the Tc of MgB2 decreases upon electron doping (by
substituting Mg with Al or B with C) [19–26] due to the
filling of the p� hole and possibly impurity scattering
effects. Surprisingly, hole doping through substituting
Mg with Li or B with Be was found to suppress the Tc,
too, [27,28] leaving MgB2 a naturally optimally doped
superconductor. Therefore, it would be interesting to study
the doping effects on the phonon renormalization as de-
fined in Eq. (8). Figure 1 shows the phonon energies,! and
!0, of the E2g mode as functions of the doping level x
(additional electrons=cell), assuming that doping does not
lead to phase separations or phase transitions. For x � 0:5,
the reference (unrenormalized) phonon energy !0 in-
creases smoothly as doping level increases. As x increases
beyond 0.5, the excess electrons start occupying weakly
coupled p� bands which have no noticeable effects on the
E2g phonon energy. The true (renormalized) phonon en-
ergy (!), in contrast, increases sharply with increasing
2-2
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doping for 0:2 � x � 0:5. This reveals a steep decrease of
the renormalization effects. In order to focus on the e-ph
coupling induced phonon renormalization, we neglect the
structural changes due to doping and use the experimental
lattice constant of undoped MgB2 in all of our calculations.
The E2g phonon energy of �MgB2�

1:0� is about 121 meV if
experimental lattice constants of AlB2 are used, which
agree well with the measured phonon energy in AlB2.
However, this additional change in phonon energy arises
from the change in lattice constants, not from the e-ph
coupling.

A convenient indication of the renormalization effect is
the parameter 
�!2�=!2 � �!2

0 �!2�=!2, which is
shown in Fig. 2. Indeed, this renormalization parameter
drops from about 1.0 for the undoped system to 0.15 for
x � 0:5. Further increase of the doping results in com-
pletely filled p� bands, and the e-ph renormalization
effects become negligible. Our approach also reproduces
well an abrupt decrease in phonon renormalization for x �
0:2, which was discussed previously [20,23,29]. Experi-
mentally, it is well known that both Tc and the E2g phonon
energy depend strongly on the doping level, and Tc drops
[20] to nearly zero in Mg0:5Al0:5B2. Our results also agree
well with a recent calculation of the E2g phonon energy of
Mg1�xAlxB2 [30]. However, we calculate explicitly the
phonon renormalization, not just the phonon energy, as a
function of doping level, and our approach does not require
explicit evaluations of the e-ph matrix elements. Table I
shows the energy and renormalization for four phonon
modes in MgB2. The E2g modes, both at � and A, show
enormous renormalization arising from the coupling with
the Fermi-surface electrons. Phonons at the M point, in
contrast, show negligible coupling effects. It is also inter-
esting to point out that hole doping reduces the renormal-
ization effects, too, which leaves little room for improving
the e-ph coupling strength in MgB2 through chemical
doping. This might explain the fact that undoped MgB2

still sets the record for highest Tc.
Following the idea of Allen and Cohen [1], we may

relate the phonon renormalization 
�!2� to the phonon
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FIG. 2. The E2g phonon renormalization in MgB2 as a function
of doping. The curve is a guide for the eyes.
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linewidth (full width), defined as

� � 2�!
X
i
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2 (9)

and to the e-ph coupling constant using the Allen formula
[32]. Note that Eq. (8) contains the matrix elements of both
screened and bare ionic potentials whereas Eq. (9) involves
only those of the screened potential. Introducing an effec-
tive screening ��, Eq. (8) may be rewritten as


�!2� � 2 ��!
X
i

���i�jh ij
Vscfj iij2: (10)

If we replace � functions in Eqs. (9) and (10) by Gaussians
with a width of the phonon energy!, we reach an approxi-
mation for �, which is linear in 
�!2� as proposed by
Allen and his collaborators: [1–3]

� �

�������
2�

p

�!2�

��!
: (11)

The effective screening �� from the interband transitions
can be approximated by �2=!2

0, where � is the ionic
contribution to the phonon energy. For the E2g mode in
MgB2, we obtain �� � �2=!2

0 � 4:9. Phonon linewidths of
four phonon modes calculated using Eq. (11) are listed in
Table I, which agree surprisingly well with the results of
Shukla et al. (shown in parenthesis) [31]. Note that the
phonon linewidth at � is not available from the work of
Shukla [31]; the value quoted is taken from q � 0:2 (�-A).

As we have mentioned earlier, the screening charge due
to the change in the band occupation numbers [the second
term of Eq. (5)] is fairly nonlocal. Electrons redistribute
themselves in response to phonon distortions so that a
constant Fermi level is maintained throughout the system.
For the case of the E2g phonon in MgB2, electrons move
away from the elongated bonds and flow into the com-
pressed ones, as shown schematically in Fig. 3(a).
Therefore, we expect the screening to be fairly nonlocal.
Figure 3(b) shows the Fourier transform of the screening
charge due to the change in the band occupation numbers,
which is calculated with a frozen phonon (E2g) displace-
ment of 0.1 a.u. The prominent peak at jGj2 � 6 Ry is
consistent with the observation that the charge redistribu-
tion occurs across a real-space distance j ~aj=2.

Finally, we would like to point out that our formalism
may also be applicable to the study of doping dependent
TABLE I. Phonon renormalization in MgB2. Numbers in pa-
renthesis are results from the work of Shukla et al. [31].

Phonon mode E2g��� E2g�A� E1u�M� A2u�M�

! �meV� 66.17 59.72 56.90 51.46
!0 �meV� 93.89 78.73 56.91 52.25

! �meV� 27.72 19.01 0.01 0.79

�!2�=!2 1.02 0.74 0.00 0.03
� �meV� 34.1 22.5 0.01 0.81

(�32) (20.4) (0.00) (1.1)
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FIG. 3. Nonlocal nature of the metallic screening. (a) Sche-
matics of the charge redistribution in the real-space as a result of
phonon distortions. (b) Fourier transform of the metallic screen-
ing charge in MgB2, calculated with an E2g phonon displace-
ment of 0.1 a.u.
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phonon softening in high Tc cuprates [33–36], provided
that an accurate description of the Fermi surface is avail-
able. Despite nearly two decades of intensive research,
electron-phonon coupling in high Tc cuprates is still a
subject of controversy. An interesting and successful
model for treating phonons in cuprates was proposed by
Falter et al. [37–39]. The essence of this model, i.e., the
separation of local and nonlocal charge responses, is in
some sense similar to ours. However, we would like to
emphasize the ‘‘first-principle’’ nature of our approach.

In summary, we propose a convenient scheme for cal-
culating the phonon renormalization in metals due to the
coupling between phonons and the Fermi-surface elec-
trons. This scheme is based on the observation that the
electronic polarizability in metals has both inter- and intra-
band contributions. The intraband contribution results in an
additional (nonlocal) screening and accounts for the extra
phonon softening in metals. Not surprisingly, we may
relate this extra softening directly to the e-ph coupling
strength in metals, as proposed by Allen and Cohen [1].
Since no explicit evaluation of the e-ph matrix elements is
required, our method is also computationally advantageous
compared with traditional approaches, and our results on
22550
phonon renormalization in MgB2 agree well with previous
work. More importantly, we show that both electron and
hole doping result in reduced e-ph coupling strength in
MgB2; this is a somewhat disappointing result for the
search for high Tc but consistent with experiments.
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