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Controlled Observation of a Nonequilibrium Ising-Bloch Transition in a Nonlinear Optical Cavity
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We report the controlled observation of the nonequilibrium Ising-Bloch transition in a broad area
nonlinear optical cavity (a quasi-1D single longitudinal-mode photorefractive oscillator in a degenerate
four-wave mixing configuration). Our experimental technique allows for the controlled injection of the
domain walls. We use cavity detuning as control parameter and find that both Ising and Bloch walls can
exist for the same detuning values within a certain interval of detunings; i.e., the Ising-Bloch transition is
hysteretic in our case. A complex Ginzburg-Landau model is used for supporting the observations.
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Spatially extended bistable systems exhibit a large vari-
ety of localized structures as bistability allows that differ-
ent states occupy different spatial regions. An interesting
subclass is that of systems with broken phase invariance
[1], which can display defects in the form of interfaces, so-
called fronts, across which the system passes from one of
the bistable phases to the other one in adjacent spatial
domains. Here we consider one-dimensional systems.

In equilibrium systems, characterized by a well-defined
free energy, two cases can be distinguished depending on
whether the two states that the front connects have equal or
different free energy: When equivalent (e.g., the two pos-
sible orientations of magnetization in a ferromagnet) fronts
are static, while when both states have different free en-
ergy, fronts move so that the lower energy state finally
invades the whole system. Front dynamics is richer in
nonequilibrium systems whose dynamics does not derive
from a free energy. As in equilibrium systems, a front
connecting two nonequivalent states is a transient state.
Contrarily, the behavior is different from equilibrium sys-
tems when the front connects two equivalent states (these
fronts are known as domain walls, DWs): Motion in this
case is still possible through a parity breaking bifurcation
occurring at the front core [2]. Before the bifurcation the
(resting) structure is ‘‘odd’’ with respect to the front and is
known as an Ising wall; after the bifurcation that symmetry
is lost and the structure, known as a Bloch wall, moves.
This nonequilibrium Ising-Bloch transition (NIBT) [3]
[borrowing its name from the (equilibrium) Ising-Bloch
transition of ferromagnets [4]] is generic in self-oscillatory
systems parametrically forced at twice their natural oscil-
lation frequency [2,5].

There are few experimental observations of this phe-
nomenon. As far as we know, it has been reported only in
liquid crystals [6] either subjected to rotating magnetic
fields, [7,8] or to an alternate electrical voltage [9]. This
last experiment constitutes a particularly clear observation
of the NIBT free of 2D effects, which complicate front
dynamics through curvature effects.

Nonlinear optical cavities provide several examples of
systems with broken phase invariance for which the NIBT
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has been predicted but not yet observed (intracavity type II
second-harmonic generation [3], degenerate optical para-
metric oscillation [10–12], and cavity degenerate four-
wave mixing [13]). In an optical system, the DW connects
two stable states of equal light intensity but opposite (i.e.,
separated by �) phase. In the Ising wall the phase jumps
sharply by �, and the light intensity is null at the wall core,
while in the Bloch wall the phase angle rotates continu-
ously through �, and the light intensity is minimal but not
null at the wall core. As two senses of rotation are possible,
Bloch walls are chiral (have the symmetry of a corkscrew),
which has important dynamical consequences as walls
with opposite chirality move in opposite directions [2]. In
this Letter we report the first experimental observation of
the NIBT in a nonlinear optical system. Moreover, the
NIBT we describe below presents a distinctive feature
that, to the best of our knowledge, has not been described
before: It is a hysteretic NIBT; i.e., there is a domain of
coexistence of both Ising and Bloch walls.

Our system is a single longitudinal-mode photorefrac-
tive oscillator in a degenerate four-wave mixing configu-
ration [14–16], exactly the same system used in [16]. Two
counterpropagating coherent pump beams of equal fre-
quency illuminate a BaTiO3 crystal which produces scat-
tered light, part of which seeds the oscillation into the
(plane mirrors) Fabry-Perot resonator. Oscillation is dy-
namically ruled by gain, losses, cavity detuning (the mis-
match between the frequency of the pump fields and that of
the longitudinal cavity mode in which the system oscil-
lates), and diffraction. Each of these parameters can be
modified in our experiment up to a certain extent. In
particular, the detuning � can be finely tuned by our
adjusting of the stabilized cavity length [16] and plays
the role of control parameter in our experiment. Two
characteristics of the cavity are particularly relevant.
First, we are using a near self-imaging resonator [17] that
allows us to have a very large Fresnel number, i.e., allows
the oscillation of a very large number of transverse modes.
Second, we intentionally make our system quasi-1D in the
transverse dimension by placing slits in the Fourier planes.
The width of the slits is adjusted to the size of the diffrac-
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tion spot in these planes. In this way, beams with an
inclination such that their transverse wave vector does
not lie in the plane defined by the center line of the slit
are not compatible with the diffraction constrains of the
cavity. The Fourier filtering allows the use of finite width
slits and still gets rid of most 2D effects, such as front
curvature. All this amounts to saying that our nonlinear
cavity is equivalent to a large aspect ratio 1D nonlinear
system. Figure 1 displays a simplified scheme of the pho-
torefractive oscillator and the reader is referred to [16] for
full details.

In [15] the dynamics of spontaneously formed phase
domains was experimentally studied in a setup very similar
to the one we use here but, importantly, two dimensional in
the transverse plane. Larionova et al. [15] characterize the
closed wall separating different phase domains and find
Bloch-type and Ising-type segments along the same wall.
They did not observe, however, any NIBT because of the
2D character of their system.

In [16] pattern formation in the same system we are
using here was discussed. The basic bifurcation diagram
found in [16] can be summarized as follows: For large
enough negative detuning �, the system forms a periodic
structure (stripe pattern) whose spatial frequency varies as
k2 ��� (this law allows the sharp determination of the
cavity resonance); for small negative �, aperiodic patterns
are formed; and for positive �, homogeneous states are
found. In this last region, DWs (isolated or not) form
spontaneously, as already described in [16]. In this Letter
we address the dynamic behavior of these DWs as � is
varied.
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FIG. 1. Scheme of the experimental setup: M, cavity mirrors;
L, effective cavity length; D, rectangular diaphragm that makes
the system quasi-1D; PZT, piezotransducer for control of the
cavity detuning; BaTiO3, photorefractive nonlinear crystal (5

5
 5 mm3). The tilted arrows indicate the two counterpropagat-
ing pump beams. Four lenses of focal length f are arranged in
two telescopic systems for forming a (near) self-imaging reso-
nator. See [16] for a detailed description of the experimental
setup. Photographs: Output field intensity in the near and far
fields for a striped pattern showing the quasi-1D nature of the
system.
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A crucial difference with respect to [16] and from any
previous experiment is that in the present experiment DWs
are created in a controlled way. This is achieved by inject-
ing, for a short time, a tilted laser beam of the same
frequency as the pumps into the photorefractive oscillator.
This tilted beam has a phase profile ��x� � �0 �
�2�=� sin��x (�0 is a constant, � the light wavelength,
� the tilt angle with respect to the resonator axis, and x the
transverse coordinate). As the degenerate four-wave mix-
ing process is phase sensitive [18], only two phase values
(say 0 and �, modulo 2�) are amplified. Consequently, the
portions of the transverse plane whose phase lies in � �
�=2;��=2� (in � � �=2;�3�=2�) are attracted towards
the phase value 0 (�). The points at which � � 	�=2
(modulo 2�) are dark as those phase values are not ampli-
fied and, more importantly, because these points are sepa-
rating adjacent domains with opposite phases. These points
(the domain walls) are thus topological defects [19]. Once
DWs are envisaged, the injection is removed. In this way a
single DW (or more, for larger tilt angles in the writing
beam) can be written at the desired location along the
transverse dimension.

The intensity distribution on the x-y plane, perpendicu-
lar to the resonator axis z, is not homogeneous due to
several reasons, the Gaussian profile of the pump beam
among them. On the other hand, the intracavity slits make
the system quasi-1D but, obviously, not strictly 1D. Then
in order to analyze quantitatively the intensity and phase
properties of the field, either a particular value of y is
chosen or some averaging in the y direction is made. Our
strategy has consisted in isolating the central region in the y
direction where the output intensity is approximately con-
stant (for fixed x) and then making an average of the field
inside this region. We chose this option because this pro-
cedure gets rid of local imperfections, which could affect
the wall characterization if a particular y value were
chosen. Notice that in this way the outer borders in the y
direction are discarded, a convenient procedure in order to
avoid border effects in the DW characterization. The in-
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FIG. 2. Amplitude (dashed line, arbitrary units) and phase (full
line) of an Ising (a) and a Bloch (b) domain wall as a function of
the transverse coordinate, as reconstructed with the interfero-
metric technique in [15]. The profiles correspond to the cases
represented in the fourth row snapshots in Figs. 3(a) and 3(b),
respectively.
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terferometric reconstruction technique giving the complex
field A�x; y� is described in full detail in [15], and it is from
these data that we obtain the average field hA�x�iy.

Depending on the cavity detuning value, two different
types of DWs are found: For small (large) values of �,
static Ising-type (moving Bloch-type) DWs are seen. The
Ising or Bloch character of the DWs is clearly appreciated
in Fig. 2: The Ising wall exhibits a discontinuous phase
jump and the field intensity is nearly zero at the wall center
[Fig. 2(a)], while in the Bloch wall the phase variation is
smooth and the field intensity minimum is clearly different
from zero [Fig. 2(b)]. But the most striking difference
between Ising and Bloch walls is in their different dynamic
behavior. In Fig. 3 interferometric snapshots of Ising
[Fig. 3(a)] and Bloch [Figs. 3(b) and 3(c)] DWs are shown.
The difference between Figs. 3(b) and 3(c) lies in the sign
of the velocity, which is different due to the different
chirality of the Bloch walls in the two figures. It can be
appreciated that the wall velocity is not constant; i.e., there
is some acceleration. This is due to the spatial inhomoge-
neity of the field along the x direction as the intensity
gradient introduces spurious effects on the wall dynamics.
Then, when evaluating the wall velocity (see below), we
discard the part of the trajectory where the acceleration is
more obvious.

Let us see now where (in terms of the cavity detuning �,
the control parameter) and how the NIBT occurs. We
proceeded as follows: Starting with one of the Ising walls,
� is increased in small steps [20]. We observe that the Ising
wall remains at rest until some critical detuning value is
reached, call it �IB, where the wall spontaneously starts to
move [Figs. 3(b) and 3(c)], thus signaling a NIBT. As the
illuminated region is finite, after some time the Bloch wall
disappears through the illuminated border. Then, in order
to follow the dynamics for �>�IB, new DWs are injected
for each increasing value of �. We check in this way that
for �> �IB walls are always of the Bloch type. Next we
proceeded to a reverse scan of the detuning: Starting with
large positive �, we inject a DW and see that it is of Bloch
type. Then we decrease � and repeat the operation until a
value of � is reached, say �BI, below which only Ising
(a) (b) (c)

FIG. 3. Interferometric snapshots of Ising (a) and Bloch (b)
and (c), domain walls. In (a) [(b) and (c)] the detuning is 0 MHz
(25 MHz). The interferograms show sharp phase jumps in (a),
and smooth ones in (b) and (c). Time runs from top to bottom in
steps of 5 s, and the horizontal (transverse) dimension is 1.6 mm.
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walls are observed. The interesting feature is that �BI <
�IB; i.e., there is a domain of detuning values (�BI < �<
�IB) were both Ising and Bloch walls exist. In fact we have
checked repeatedly that within this domain of hysteresis
both Bloch and Ising walls are observed alternatively after
subsequent wall injections for fixed � (in this detuning
range the final state obviously depends on the initial con-
dition, which seemingly we are not able to control). We
repeated the procedure until we convinced ourselves of the
reproducibility of the observation. Let us remark that the
hysteresis cannot be attributed to mechanical hysteresis in
the piezoelectric mirror that controls �, as subsequent
observations of the two types of walls for fixed � rule
out this possibility. Figure 4 summarizes these findings.
The upper and lower arrows indicate the values of � where
the NIBTs are observed (which we have called �BI and
�IB), and the squares (crosses) denote increasing (decreas-
ing) detuning scan. These results firmly establish the ex-
istence of the hysteresis cycle.

Although one could think that the observed hysteresis
could be due to a subcritical character of the NIBT in our
system, we argue that it is due to the existence of a
hysteresis cycle in the homogeneous states of the system.
In the first case, the homogeneous states connected by the
DW, differing only in their phase, would have the same
intensity irrespective of the wall type (Ising or Bloch).
Contrarily, in the second case the homogeneous states
should be different for Ising and Bloch walls. The latter
is our case: The two equivalent homogeneous states (of
opposite phases) connected by the Ising wall have larger
intensities than those connected by the Bloch wall. This
implies that there are two homogeneous states in the
system that are bistable in a limited range of cavity detun-
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FIG. 4. DW velocity versus cavity detuning in units of the
cavity free-spectral range (which is 120 MHz). Squares (crosses)
indicate increasing (decreasing) detuning scan, the segments
indicate the error bars, and the arrows mark the two nonequilib-
rium Ising-Bloch transitions. The hysteresis cycle is clearly
apparent; see text for details.
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ing values. We have measured the homogeneous state
intensity by scanning � and have found evidence of the
existence of a bistability loop. Very likely, the NIBT occurs
somewhere in the middle of the unstable branch of the
homogeneous state (the one connecting the higher and the
smaller intensity stable states). This would explain why we
never observe Bloch walls moving at small velocities.

Finally, in order to provide some theoretical support we
consider the following phenomenological, adimensional
model:

@tE � �1� i��E� �E � �1� i��@2xE

� �1� i�3�jEj2E� i�5jEj4E; (1)

where E is proportional to the complex intracavity field
amplitude, � accounts for parametric gain (the typical
phase symmetry breaking term of degenerate four-wave
mixing [21]), � is the detuning, � accounts for diffraction,
and �3 and �5 account for nonlinear dispersion. When
�5 � 0, Eq. (1) is the complex Ginzburg-Landau equation
investigated in [2]. This minimum correction to the model
of [2], the term �i�5jEj4E, mimics the refractive index
saturation existing in photorefractive media. We have
found that Eq. (1) displays an intensity-bistable homoge-
neous state in coincidence with a hysteretic NIBT (similar
to Fig. 4) for a wide range of parameters (as an example,
for � � 2, � � 1, �3 � �2:7, and �5 � 1, the hysteretic
NIBT is observed; details will be given elsewhere). Of
course, we do not claim that this constitutes a theoretical
interpretation of our experimental results as Eq. (1) has not
been derived from first principles. In any case, the fact that
the modified Ginzburg-Landau Eq. (1) shows a hysteretic
NIBT indicates that the phenomenon we are reporting
could be found in other systems.

In conclusion, we have reported the first observation of
the nonequilibrium Ising-Bloch transition in an optical
system, a quasi-1D single longitudinal-mode photorefrac-
tive oscillator in a degenerate four-wave mixing configu-
ration, using the cavity detuning as the control parameter.
The NIBT we report is special in the sense that it is
hysteretic; i.e., in terms of the control parameter, there is
a domain of coexistence of both Ising and Bloch walls. The
origin of this hysteretic cycle lies in the bistability exhib-
ited by the homogeneous state of the system.
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