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Measurement of Net Group and Reshaping Delays for Optical Pulses in Dispersive Media
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We experimentally demonstrate the direct measurement of net group and reshaping delays for arbitrary
optical pulses in dispersive media, verifying the earlier prediction of Peatross et al. [Phys. Rev. Lett. 84,
2370 (2000)]. Incoherent pulse propagation in an absorptionless system is well described by net group
delay; even the medium causes a great deal of deformation in the transmitted pulse. However, in the case
of phase modulated chirping pulses in a resonant absorber, the so-called superluminal or subluminal
propagation velocity is strongly influenced by the reshaping delay.
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The velocity of the wave packet, which may be highly
subluminal, superluminal, or even negative, has a great
significance in physics. Historically, the study of wave
packet propagation in dispersive media was started by
Sommerfeld and Brillouin [1]. Garret and McCumber [2]
predicted that ‘“‘the pulse peak through a small optical
thickness of a resonant absorber can propagate with the
conventional group velocity even it is superluminal or
negative.” Superluminal pulse propagation has been ex-
perimentally observed through a resonant absorber [3],
single photon tunneling [4], birefringent photonic crystals,
etc. [5—7]. Another current interest, in pulse propagation,
may be the ultraslow group velocity observed in atomic
gases [8—10]. The key point is that the conventional group
velocity can explain pulse propagation for limited cases,
that is, for small optical thickness of the medium, narrow
input, and/or broad absorption line.

Superluminal group velocity, especially in the context of
describing the signal or information propagation, has re-
newed the fundamental interest [11]. Such velocity appears
in the anomalous dispersion region with severe attenuation
or amplification. So, the identity of the transmitted pulse
with the incident one as well as the concept of super-
luminal signal transfer becomes dubious. To overcome
this situation, Wang et al. created a transparent anomalous
dispersion region between two amplification lines and
observed the superluminal propagation without a signifi-
cant attenuation, amplification, or deformation in the pulse
shape [12]. Their achievement is a major breakthrough in
superluminal phenomena. In physical systems, however, as
well as in applications, lossless and group velocity disper-
sion free region is a very special case because such a
system may hardly appear even in a well designed and
careful experimental technique. Furthermore, as for signal,
if one wishes to encode a nonanalytical structure on the
pulse shape, the pulse spectrum becomes nearly infinite in
width and the narrow band treatment of the pulse naturally
breaks down. In this respect, an important question in
physics is whether it is possible to describe the pulse
propagation beyond the conventional group velocity, espe-
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cially where a strong pulse attenuation, amplification, or
distortion occurs.

Peatross et al. [13] have defined the arrival time of a
pulse by the expectation integral, (#); = [ tS(7, t)dt/
[ S(7, 1)dt, where §(7, t) is the Poynting vector in the pulse.
In their analysis, it is asserted that the propagation velocity,
in terms of net group and reshaping delays, is always
significant even in the cases of strong attenuation, ampli-
fication, or distortion. In this Letter, we report experimen-
tal investigation of the propagation of arbitrarily shaped
femtosecond optical pulses through various dispersive me-
dia and thus the measurement of propagation delay.
Definitely the new concept of group velocity does not
break down in any case.

The experimental setup consists of a dual interferometer,
and is shown in Fig. 1. Transform limited femtosecond
optical pulses, with a temporal width of 70 fs, from a
Ti:sapphire laser, are used. A double-pulsed signal is ob-
tained with the first (Mach-Zehnder) interferometer in
which the reference arm is empty and the sample arm
contains the sample. The difference in the optical path
lengths AL of the two arms of the interferometer is
scanned by corner cube reflector CC1, on a translational
stage in the reference arm, and measured by a precise
magnetic position sensor. To have arbitrary pulses in the
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FIG. 1. Schematic experimental setup: Beam splitters; BS1,

BS2, and BS3. Corner cube reflectors: CC1, CC2, and CC3;
second harmonic generating crystal, SHG.
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sample arm, the sample beam was passed through a pulse
shaping unit where the incoming pulses could be modified
and shaped into complex pulses with multiple peaks or
into chirping pulses. In order to form pulses with multiple
peaks, the pulse shaping apparatus was configured in a 4-F
arrangement [14]. A pair of gratings (1200 line/mm),
placed at the focal planes of a unit magnification confocal
lens pair with focal lengths of F = 14 cm, was the main
element in the pulse shaping unit. Spatially patterned phase
and amplitude masks, fabricated on a half of a glass sub-
strate, were inserted between the lenses by mounting on a
translation stage. The masks could be slid into a position
that the beam could either pass or avoid to pass through the
masks, and thus the complex pulses with multiple peaks or
incoming coherent pulses were obtained. Nevertheless, the
beam always took the same glass substrate; the setup could
determine the relative temporal position of both pulses
with an accuracy of =1 fs. An example of produced com-
plex pulses is shown in Fig. 2(a). We describe such non-
transform limited multipeaked pulses as incoherent pulses
in this Letter. To form chirping pulses, the gratings pair
were simply placed with a separation of about 8.1 mm
between them. The sample and reference beams emerging
from the first interferometer were carefully combined by
the beam splitter BS3 and led into the second (Michelson)
interferometer. Thus, each arm of the second interferome-
ter contained a pair of pulses: an undisturbed reference
pulse and an incoherent, or a chirping, or a coherent pulse,
transmitted by the sample. Therefore, the intensity corre-
lation signal of the pulse pair is obtained by scanning the
time delay 7 between two copies of the pair. Near 7 = 0
the sample pulse overlaps with its own copy and so does
the reference pulse. The measured signal is then the sum of
the intensity autocorrelations of the two pulses. Thus, for
every scan, the center of mass of autocorrelation gives the
starting point (7 = 0). Near 7 = *AL/c, with ¢ the speed
of light, one copy of the sample pulse overlaps with one
copy of the reference pulse. This produces the cross corre-
lation trace of the sample and reference pulses. The corre-
lation trace is averaged and then the propagation delay, that
is, the temporal separation between the centers of mass of
autocorrelation and cross correlation, has been determined
using a computational data processing routine. So, our
double interferometer setup has merit: determining the
propagation delay of arbitrarily shaped pulses with a
good accuracy using the autocorrelation as a standard.
The spectrum of the transmitted pulse also is fed into a
25 cm spectrometer and recorded using a charge-coupled
device camera.

The concept of both net group and reshaping delays
may be examined individually in a well designed experi-
mental system. We first examine the propagation of both
coherent and incoherent optical pulses in order to verify the
significance of net group delay. In this case, an absorp-
tionless dispersive medium, ZnSe substrates, is used as
the sample and inserted into the sample arm of the first
interferometer as shown in Fig. 1. The refractive index
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FIG. 2. Observed cross correlations (solid curves) of incoher-
ent pulses, at 800 nm, transmitted through ZnSe of (a) 0.0,
(b) 10.10, (c) 20.03, and (d) 30.07 mm, in the sample arm. The
cross correlation represented by the dashed line in (a) is for
coherent pulses at the same wavelength. The horizontal axis for
each graph is the absolute delay time 7., and labeled in ps. The
centers of mass for coherent pulses transmitted through differ-
ent lengths of ZnSe are (a) 0.0, (b) 58.13, (c) 115.27, and
(d) 173.00 ps, while the corresponding ones for incoherent pulses
are indicated by downward arrows. Open circles, solid circles,
and upward triangles are the eye guides to three major peaks of
cross correlations. The cross correlation is seen to widen and
deformed significantly, increasing ZnSe thickness, evolving an
additional peak shown by the downward triangle in (d).

curve of ZnSe is given by an approximation equation, n =

V[3.882 + 2.066A%/(A? — 0.109)], with A in um. Figure 2
shows the cross correlations for incoherent pulses after
propagation through different lengths of ZnSe. The hori-
zontal axis for each graph is labeled in ps and describes the
absolute delay time 7,,, in which the origin, 74, = 0, is
taken at the center of mass of the coherent pulse without
the ZnSe sample. The additional axis in the bottom dis-
plays the retarded delay time 7, in which the origin, 7, =
0, is taken at the center of mass of the coherent pulse with
corresponding length of ZnSe. The absolute propagation
time, determined at the center of mass, of transmitted
incoherent pulse coincides with that of the transmitted
coherent pulse with an accuracy of =2 fs, as indicated by
the downward arrows in all experiments [graphs (a) to (d)].
This is true even for a long propagation distance (=200 ps)
with a severe distortion in the pulse shape as shown in
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Fig. 2(d). It would be worthwhile to note that no spectral
shifts were observed in the transmitted pulse even for a
40 mm thickness of ZnSe.

It is clear that the deformation in the transmitted pulse
profile may occur when it travels a long propagation dis-
tance through a dispersive medium and thus the conven-
tional group velocity loses precise meaning. In order to
describe this situation, it has been suggested [13] that if one
describes the propagation time by the arrival of the center
of mass of the pulse, then the time interval between the
pulse’s arrival at two points through the medium is given
by

i %, S )[Rk Afldw
a- %, §(7’, w)dw

At

+ Tle ™A E(F), 0)]

where

. je [ 2EG0) s B W)
TEG, o)) = —i 2 et X I 0)de
i- [*,S(F w)dw

2

S (7, w) is the Poynting vector of the Fourier transformed
fields E(7 w) and H(7, o) in the pulse. The first term in
Eq. (1) is called the net group delay, which is the spectral
superposition of group delay at each frequency. The sum of
the second and third terms expresses the reshaping delay
which is the pulse arrival time at a point without and with
the spectral amplitude that is attenuated or amplified dur-
ing propagation. So the reshaping delay will be zero if the
pulse spectrum remains unaltered during propagation. This
occurs if the imaginary part of the refractive index does not
change with frequency. We have calculated the net group
delay using the first term in Eq. (1). The center of mass of
the transmitted coherent pulse in our experiments co-
incides with that in our calculation, with an accuracy of
10 fs. Therefore, the results show quantitatively a good
accordance with the prediction by Ref. [13]. However, one
can notice a deviation in the propagation time if it is
described by a peak of the transmitted pulse. The pulse
propagation shown in Fig. 2 may be reminiscent of the
Ehrenfest theorem in quantum mechanics. A quantum
wave packet propagating in free space may suffer the
broadening or distortion owing to the vacuum dispersion
while the center of mass of the packet will propagate with a
constant velocity of average group velocity (dw/dk) [15].

A large reshaping delay may be observed in the propa-
gation of strongly phase modulated chirping pulses in a
resonant absorber. By modulating the phase of the coherent
pulses, temporally broadened linear down chirping pulses
with an autocorrelation width of 335 fs were produced.
IR125 dye in dimethyl sulfoxide (DMSO), a resonant
absorber with an absorption peak at 794 nm and a width
of = 60 nm (FWHM), was used as the sample. The effec-
tive path length is a product of refractive index and propa-
gation distance (10 mm), while the refractive index is

linearly proportional to the concentration of the dye [16].
Therefore, the propagation distance in our experiment is
represented by the concentration of the dye solution.
Wavelengths of the incident pulses are tuned at 814 and
774 nm, both sides of the resonance frequency of IR125
absorption band. Figure 3 shows the propagation delays,
determined at the center of mass of transmitted pulse, both
for coherent and chirping pulses. It can be noted that the
propagation delay has been strongly influenced by the
chirping factor. On the basis of Egs. (1) and (2), it is
understood that, for a well compressed coherent pulse,
the propagation delay is the net group delay. On the other
hand, the propagation delay for a chirping pulse includes
the effects of both reshaping and net group delays.
Therefore, we obtain the reshaping delay experimentally
(solid circles in Fig. 3) by subtracting the observed delay of
the coherent pulses from that of the chirping pulses. It is
interesting to note that the propagation delay for the co-
herent pulse propagation remain superluminal at both
wavelengths as within the anomalous dispersion region.
However, for the chirping pulse propagation, it becomes
subluminal with an incident wavelength of 814 nm and
more superluminal with that of 774 nm.

Figure 4 displays the results of experiments on trans-
mitted spectra. It shows red and blue spectral shifts with
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FIG. 3. Observed propagation delays as a function of dye con-
centration for two different wavelengths (a) 814 and (b) 774 nm.
Open circles and open diamonds are propagation delays for
chirping and coherent pulses, respectively, while the solid circles
represent the measured reshaping delay. Solid, dotted, and
dashed lines, respectively, describe the reshaping, total, and
net group delays for chirping pulse propagation calculated using
Egs. (1) and (2). Inset displays the temporal profile of a trans-
mitted pulse after propagation through a concentration of the dye
of 10 X 107% M (thin line) along with the initial (thick line)
chirping pulse at 814 nm.
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FIG. 4. Solid circles and solid triangles represent the experi-
mentally observed center wavelengths of the transmitted chirp-
ing pulses as a function of dye concentration at the incident
wavelengths of 814 and 774 nm, respectively, while the open
circles and open triangles represent that for coherent pulses.
Inset displays spectral profile of the transmitted chirping pulse
after propagation through the dye of 10 X 107® M (thin line)
along with the initial (thick line) chirping pulse at 8§14 nm.

propagation distance at initial wavelengths of 814 and
774 nm, respectively. The chirping pulse is organized in
such a way that the high frequency components are in the
front and the low frequency ones are in the back of the
pulse in the time domain. In the case of the incident pulse
at 774 nm, an enhanced superluminality observed in the
propagation delay is attributed to the strong attenuation of
the low frequency components of the pulse in the medium.
Reversely, a large subluminal effect has been observed for
the incident pulse at 814 nm. The observed spectral shifts
for chirping and coherent pulses are the same, as the initial
pulse spectrum remains unaltered in both cases. It can be
noted that such spectral shifts originate in the imaginary
part of the refractive index and suggest that the conven-
tional group velocity, described on the basis of the real part
of the refractive index only, would not work as well to
describe the pulse propagation. The solid lines in Fig. 3
show the reshaping delay calculated using Eq. (1) and the
observed spectral shifts. The evaluation order of net group
and reshaping delays in Eq. (1) can be interchanged [13].
However, for practical purposes the net group delay at the
end of propagation has a greater significance. So, we
evaluate the reshaping delay as the difference of propaga-
tion time between the transform limited coherent and
chirping pulses. The experimental results in Figs. 3 and 4
show quantitatively a good accordance with the prediction
by Ref. [13].

Enhanced superluminality observed at 774 nm for phase
modulated chirping pulses may not even be a potential of
the superluminal signal propagation. First, one may define
the signal position by printing a nonanalytical point in the
pulse profile. A nonanalytical point contains nearly an
infinite range of frequency components and can seriously
deform the transmitted chirping pulse profile. Second, if
the signal is defined on the basis of the center of mass, one
cannot determine the signal position until the complete

pulse has passed the detector. Finally, if one defines the
signal when the pulse profile crosses a certain level of the
intensity, it is discussed that quantum noise disturbs for
such a signal to propagate faster than ¢ [17].

In conclusion, we have measured the propagation delay
for different shaped optical pulses in absorbing and ab-
sorptionless dispersive media with a good experimental
accuracy and described it in the context of the net group
and reshaping delays. Increased superluminality or sub-
luminality, observed for phase modulated chirping pulse
propagation, is a consequence of the reshaping of output
pulses. The propagation of the wave packet can be impor-
tant in applications, besides its fundamental interests both
in classical and quantum physics. A fast communication
system requires a broad spectrum. In the dispersion re-
gions, although the profiles suffer a significant deforma-
tion, the center of mass of the pulse propagates with the net
group delay.
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