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Proof that the Hydrogen-Antihydrogen Molecule Is Unstable
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In the framework of nonrelativistic quantum mechanics we derive a necessary condition for four
Coulomb charges (m�

1 ; m
�
2 ; m

�
3 ; m

�
4 ), where all masses are assumed finite, to form the stable system. The

obtained stability condition is physical and is expressed through the required minimal ratio of Jacobi
masses. In particular, this provides the rigorous proof that hydrogen-antihydrogen and muonium-
antimuonium molecules and hydrogen-positron-muon systems are unstable. It also proves that replacing
hydrogen in the hydrogen-antihydrogen molecule with its heavier isotopes does not make the molecule
stable. These are the first rigorous results on the instability of these systems.
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Introduction.—Recent success in the production of
trapped antihydrogen atoms [1] has renewed interest in
the interaction of matter with antimatter and especially in
the hydrogen-antihydrogen system (H- �H). The system of
hydrogen and antihydrogen is known to decay into proton-
ium (p �p) and positronium (e�e�); the estimated lifetimes
of such fragmentation are presented in [2]. It has long been
conjectured that with pure Coulomb forces no bound state
of hydrogen-antihydrogen exists. The numerical evidence
supports this conjecture [3], yet there is a lack of rigorous
proof as remarked by some authors [4–6]. Our aim in this
Letter is (i) to supply such a proof under the assumption
that only Coulomb forces act between the constituents
and (ii) to provide insight into the screening effect within
the system of four charged particles. From our results it
also follows that the systems p��e�e�, ����e�e�,
d �pe�e�, t �pe�e� (d; t stand for deutron and tritium) are
unstable. These are new results. Let us remark that tak-
ing strong interactions into account, which are present in
the hydrogen-antihydrogen system, would hardly make
this molecule stable because of the proton-antiproton
annihilation.

To avoid any confusion we would like to stress that
under instability we understand the absence of bound states
below the dissociation thresholds; otherwise the system is
called stable; the same definition is used in [3–10]. We do
not consider such issues as long-living resonances or
bound states embedded into the continuum. The stability
problem for particles interacting through Coulomb forces
is complicated even when the number of particles is three
or four. Direct variational calculations are helpful but they
can only prove that a system is stable but no definitive
conclusion about the instability can be drawn, since any
enrichment of basis functions lowers the binding energies.
Thirring, in his book [7], has placed the stability problem
for three unit Coulomb charges as number one on the list of
difficult unsolved problems. Since that time, a lot of light
has been shed on stability of these three-body systems; the
stability domain has been outlined partly by semianalytical
methods as in [8] and partly by analytical ones as in
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[7,9,10] ([9] gives an excellent review of these matters).
Yet not much has been known about four-body systems; the
stability domain for masses was tentatively sketched in [5]
(see also [6]) and from the present rigorous analysis ap-
pears to be correct.

The physical reason for instability of H- �H is the screen-
ing effect. In [10] we have shown that the screening effect
in the system of three charged particles can be expressed
through the critical ratio of Jacobi masses. These masses
are inverse proportional to the Bohr radii of two orbits, the
orbit within the pair of particles (the pair that sets up the
dissociation threshold), and the orbit of the third particle in
the field of this pair with respect to the pair’s center of
mass. If the orbit of the third particle has a much larger
radius, the attractive force acting on it is screened and the
system must be unbound.

The system of four unit charges (m�
1 ; m

�
2 ; m

�
3 ; m

�
4 ) can

be unstable only against dissociation into two neutral pairs.
Indeed, if the lowest dissociation threshold would be dis-
sociation into one particle and the bound cluster of three
particles, then these two objects would have opposite
charges and the long-tailed Coulomb attraction between
them would guarantee the existence of a bound state below
the dissociation threshold. (Just the same argument ex-
plains why atoms are stable.) This suggests that we have
to consider three orbits, two inner orbits of the neutral
pairs, and the third orbit of the relative motion of these
pairs. The Jacobi masses for the neutral pairs are �x �
m�

1 m
�
2 =�m

�
1 �m�

2 � and �y � m�
3 m

�
4 =�m

�
3 �m�

4 �. The
Jacobi mass corresponding to the relative motion of these
two pairs is �R � �m�

1 �m�
2 ��m

�
3 �m�

4 �=�m
�
1 �m�

2 �

m�
3 �m�

4 �. Pay attention that we order the particles so that
among two possible rearrangements into neutral pairs the
lowest energy threshold corresponds to the dissociation
into �m�

1 m
�
2 � � �m�

3 m
�
4 � and the pairs are ordered so that

�x � �y. It is easy to check that �R � 4�y if the particles
are ordered as above.

Let us consider the screening effect within the system of
four particles keeping in mind that the Bohr radii of the
2-1  2005 The American Physical Society
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orbits are inverse proportional to the Jacobi masses. The
condition �y � �R alone is not sufficient for the screen-
ing effect to take over. For example, Bressanini et al. [3]
have collected the convincing evidence that the system
(m�

1 ; 1
�; m�

3 ; 1
�) is stable for any m�

1 and m�
3 . The

three-body system (m�
1 ; 1

�; 1�) is always stable and if
m�

3 � 1 we run into the situation, where �y � �R and
�R � �x, and still the whole system is stable. When
�R � �x, it is right to expect screening, because in this
case the pair �m�

1 ; m
�
2 � has a very short inner orbit and

other particles ‘‘see’’ the tightly bound pair �m�
1 ; m

�
2 � as

neutral, thus forcing the system to fall apart. Our aim in this
Letter is to present the rigorous and analytic proof of this
screening effect, namely,

�R
�x

	
13� 2

������
22

p

54
� 0:067 ) Instability: (1)

Equation (1) manifests the screening effect for four parti-
cles. From Eq. (1) it easily follows that the hydrogen-
antihydrogen molecule has no bound states and must decay
into protonium and positronium. Muonic molecules
p��e�e� and �� �pe�e� and ����e�e� are unstable
as well. And if in the hydrogen-antihydrogen system the
hydrogen atom is replaced by its heavier isotopes (when
deutron or tritium takes the place of the proton) the system
still remains unstable. Let us compare the bound in Eq. (1)
with existing numerical estimates. For the symmetric sys-
tem M�, M�, m�, m� numerical calculations [3] predict
instability already forM=m> 2:2, while Eq. (1) adopted to
this particular case tells us that the system is definitely
unstable for M=m> 58:7. Though in agreement with [3],
this number is much larger than the one obtained numeri-
cally; however, the present method leaves room for im-
provement of the constant in Eq. (1), so that it can get
closer to the number from [3]. Our derivation of Eq. (1) has
its advantage of being purely analytical.

The proof of Eq. (1) is along the same line as in [10] (the
basic idea goes back to Thirring [7]). The trick is after
certain steps to end up in the situation where the pair of
particles �m�

1 ; m
�
2 � stays in its ground state. This pair then

generates the effective potential Veff and it remains to
check whether other particles have bound states in this
effective potential. The ground state of the pair �m�

1 ; m
�
2 �

is spherically symmetric and screening is incorporated into
Veff . The power of effective potential defines the degree of
screening.

Let qi; ri 2 R3 denote charges and position vectors of
the particles i � 1, 2, 3, 4. We shall work in the system of
units where �h � 1. We put q1;3 � �1, and q2;4 � �1, and
the interactions between the particles are Vik � qiqk=jri �
rkj (remember how the particles are ordered). The stability
problem with Coulomb interactions is invariant with re-
spect to scaling all masses [9], so we can put �x � 2. By
the end we shall rescale the masses back. Throughout the
22340
Letter we shall use the following notation: for two opera-
tors B, C the relation B � C means that h�jBj�i �
h�jCj�i for any �.

From now on we restrict the range of considered systems
requiring �R < 3=8 [this is weaker than in Eq. (1), so all
systems described by Eq. (1) are within this range]. The
strategy of our proof is the following. We start with assum-
ing that the system is stable and derive the necessary
condition for stability. After that, we shall figure out the
masses for which this condition definitely does not hold,
thus arriving at Eq. (1). To separate the center of mass
motion we introduce the Jacobi frame [11] putting x �
r2 � r1, y � r4 � r3, R � �ax� r3 � r1 � by, where
a � m�

2 =�m
�
1 �m�

2 � and b � m�
4 =�m

�
3 �m�

4 � are the
mass parameters invariant with respect to mass scaling.
With Jacobi momenta defined as px;y;R � �irx;y;R, the
Hamiltonian of the system takes the form

H � h12 � h34 �
p2
R

2�R
�W; (2)

where

W � V13 � V14 � V23 � V24; (3)

and h12 � p2
x=4� 1=x, and h34 � p2

y=�2�y� � 1=y are the
Hamiltonians of the pairs �1; 2� and �3; 4� (notation x is
used instead of jxj). The ground state wave function of h12
is �0 �

���������
8=�

p
exp��2x� so that h12�0 � ��0. By the

particle ordering, the energy threshold corresponding to
dissociation into two neutral pairs is Eth � �1��y=2,
which is the sum of the binding energies of the pairs
�1; 2� and �3; 4�. Following [10] we cut off the positive
part of W by introducing W� � �jWj �W�=2 and W� �
�jWj �W�=2, which results in the decomposition W �
W� �W�, whereW� � 0. Instead ofH, we shall consider
the Hamiltonian

~H � h12 � h34 �
p2
R

2�R
�W�: (4)

(The operator ~H is self-adjoint on the same domain as H;
see [10].) Let us assume thatH is stable; i.e.,H has a bound
state � with the energy E< Eth. Because ~H 	 H we
conclude that h�j ~Hj�i<Ethjj�jj2. Before using this in-
equality let us introduce a projection operator P0, which
acts on any f�x; y;R� as

P0f � �0�x�
Z
dx0�0�x

0�f�x0; y;R�; (5)

and put  � P0� and ! � �1� P0��, where obviously
 ? ! and � �  � !. We shall assume that k ! k� 0
(later we shall get rid of this assumption), then we are free
to choose such normalization of � that k ! k� 1. Now let
us rewrite the inequality h�j ~Hj�i<Ethjj�jj2 decompos-
ing � into � �  � !.
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h jh34j i � h j
p2
R

2�R
�W�j i

� h jW�j!i � h!jW�j i � h!jh12j!i � h!jh34j!i � h!j
p2
R

2�R
�W�j!i<�1� ��y=2��jj jj2 � 1�; (6)
where we have used that the terms like h jp2
yj!i cancel

because P0 commutes with the operators p2
y, p2

R, and 1=y.
Indeed, in this case for example h jp2

yj!i � h jP0p2
yj!i �

h jp2
yP0j!i � 0.

We are going to rewrite Eq. (6) using lower bounds for
some of its terms. From the hydrogen ground state and by
the variational principle for the terms in Eq. (6) the follow-
ing inequalities hold h jh34j i � ���y=2�jj jj2 and
h!jh34j!i � ��y=2. Introducing two non-negative con-

stants, " �
���������������������
h jW�j i

p
and # �

��������������������
h!jW�j!i

p
, we get by

virtue of the Schwarz inequality jh!jW�j ij 	 "#. It
remains to figure out the bound for the term h!jh12j!i.
From the bound spectrum of the hydrogen atom we have
[7] h12 � �P0 � 1=4�1� P0�. (Indeed, P0 projects on the
ground state of h12 which has the energy �1, and the
energy of all other excited states is greater or equal to
�1=4 which is the energy of the second excited state.)
Hence for the first term in Eq. (6) we get the bound
h!jh12j!i � �1=4. Substituting this into Eq. (6) leaves
us with the main inequality

h j
p2
R

2�R
�W�j i�2"#�h!j

p2
R

2�R
�W�j!i<�

3

4
: (7)

We shall focus on the third term on the left-hand side of
Eq. (7).

First, let us prove that the inequality

p2
R

2�R
�QV14 �QV23 � �2Q2�R (8)

holds in the operator sense for any constant Q � 0. The
interactions in Eq. (8) have the form V14 � �1=jR� z1j
and V23 � �1=jR� z2j, where the vectors z1 � �ax�
�1� b�y and z2 � �1� a�x� by play the role of parame-
ters. Let us denote e�z1; z2� the energy of the Hamiltonian
on the left-hand side of Eq. (8), where by translational
invariance e�z1 � a; z2 � a� � e�z1; z2�. The function
e�z1; z2� can be easily recognized as the energy of the
particle charge �1 and mass �R moving in the field of
two positive charges Q located at the fixed centers z1 and
z2. According to [12], e�z1; z2� monotonically increases
with jz1 � z2j, hence the minimum energy is attained when
both centers of attraction coincide, i.e., when z1 � z2 � 0.
This makes the sum of interaction terms in Eq. (8) equal to
�2Q=R. The right-hand side of Eq. (8) is the energy of the
particle mass �R in this potential. From Eq. (8) using the
obvious inequality �W� � V14 � V23 we find that for any
Q � 0 and %�x; y;R�,
22340
h%j
p2
R

2�R
�QW�j%i � �2Q2�Rjj%jj2: (9)

With the help of Eq. (9) we get the following chain of
inequalities

h!j
p2
R

2�R
�W�j!i� max

&��1

�
h!j

p2
R

2�R
��&�1�W�j!i�&#2

�
� max

&��1
��2�&�1�2�R�&#2�

�
#4

8�R
�#2; (10)

where we have added and subtracted the term &#2 �
&h!jW�j!i. Substituting Eq. (10) into Eq. (7) leaves us
with the inequality

h j
p2
R

2�R
�W�j i �

#4

8�R
� #2 � 2"#<�

3

4
: (11)

The following inequality always holds

#4

8�R
� #2 � 2"#�

3

4
� �

� ���������
3

8�R

s
� 1

�
�1
"2: (12)

To see that Eq. (12) is true it suffices to take all terms to the
left-hand side and minimize over " (the minimum is
attained at the point of zero derivative with respect to ").
Substituting Eq. (12) into Eq. (11) and using "2 �
h jW�j i makes us conclude that the system of four unit
charges for �R < 3=8 is stable only if

h j
p2
R

2�R
� f1� �

������������������
3=�8�R�

q
� 1��1gW�j i< 0: (13)

It remains to consider the case when k ! k� 0. It is easy to
see that in this case the substitution � �  into the in-
equality h�j ~Hj�i<Ethjj�jj2 leads to the condition even
more stringent than Eq. (13).

It makes sense to introduce the effective potential
Veff�y;R� �

R
dxj�0j

2W�. The function  has the fac-
torized form  � �0�x�f�y;R�. Substituting this into
Eq. (13) and performing the internal integration over R
and x tells us that Eq. (13) would be broken if for all
fixed y,

p2
R

2�R
� f1� �

������������������
3=�8�R�

q
� 1��1gVeff � 0; (14)

where the operator inequality Eq. (14) is understood on the
functions depending on R alone. Summarized, if �R <
3=8 and Eq. (14) holds for all fixed y, the system is
unstable.
2-3



PRL 94, 223402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
10 JUNE 2005
We shall make one simplification, which helps carrying
out all calculations analytically. We have W � W1 �W2,
where W1 � V14 � V24 and W2 � V13 � V23. Obviously
W� 	 �W1�� � �W2�� and hence Veff 	 V�1�

eff � V�2�
eff ,

where V�i�
eff �

R
dxj�0j

2�Wi��. Breaking the kinetic energy
term in Eq. (14) into two equal parts and substituting
Veff 	 V�1�

eff � V�2�
eff we deduce that the system is unstable

if both of the following inequalities are satisfied indepen-
dently for all fixed y

p 2
R � 4�Rf1� �

������������������
3=�8�R�

q
� 1��1gV�i�

eff � 0 (15)

for i � 1, 2. Now we can apply the explicit calculation
from [10], where we have shown that the following in-
equalityZ

j�0j
2��jax� yj�1 � j�1� a�x� yj�1��dx<

3

16y2

(16)

holds for all a 2 �0; 1� [this is Eq. (16) in Ref. [10]].
Through Eq. (16) we derive the upper bounds V�i�

eff 	
�3=16�jR� ciyj�2, where c1 � �1� b� and c2 � �b.
Now we simply replace V�i�

eff in Eq. (15) with these upper
bounds, which makes both inequalities stronger. It is
known [13,14] that p2

R � &jR� ciyj�2 � 0 for & 	 1=4
(by translational invariance, the value of y does not play
a role and one can put y � 0). Thus both inequalities
Eq. (15) are satisfied if 3�Rf1��

������������������
3=�8�R�

p
�1��1g	1.

Solving this simple inequality and rescaling the masses
tells us that the system is unstable if �R 	 �13�
2

������
22

p
��x=54, which proves Eq. (1). Notice that the final

bound on the effective potential is proportional to R�2,
which is similar to the dipole interaction and makes an
interesting parallel to [13]. The constant in Eq. (1) can be
improved if everything is extracted from Eq. (14); i.e., one
has to calculate precisely Veff . We preferred to simplify by
splitting W into two terms because this makes the whole
derivation analytical. Let us also remark that instability in
22340
Eq. (1) means that there is no bound state either below or at
the threshold. Indeed, if we would have H� � Eth� then,
because one can choose �> 0 in the ground state, we
immediately get h�j ~Hj�i<Ethjj�jj2 which was the start-
ing point of our analysis.
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