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Motivated by the anti—de Sitter conformal field theory correspondence, we show that there is
remarkable agreement between static supergravity solutions and extrema of a field theory potential.
For essentially any function V(a) there are boundary conditions in anti—de Sitter space so that
gravitational solitons exist precisely at the extrema of 'V and have masses given by the value of "V at
these extrema. Based on this, we propose new positive energy conjectures. On the field theory side, each
function 'V can be interpreted as the effective potential for a certain operator in the dual field theory.
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Introduction.—There is a long history of studying gravi-
tational theories with anti—de Sitter (AdS) boundary con-
ditions (see, e.g., [1]), and in recent years this has led to
breakthroughs in string theory and models of extra dimen-
sions [2,3]. We describe below a novel feature of these
theories with AdS boundary conditions: For the same
action, there can be many possible boundary conditions,
and changing the boundary conditions changes the prop-
erties of the theory. In particular, we will see that one can
“preorder” the number and masses of solitons in some
theories—there are boundary conditions which yield any
desired result. For this reason, we call this phenomenon
“designer gravity.”

Among the theories of gravity for which this is possible
are certain supergravity theories. In fact, although this
result is independent of string theory (and does not use
supersymmetry), it was discovered while investigating the
AdS conformal field theory (AdS-CFT) correspondence
[2]. Furthermore, in cases where there is a field theory
dual, the gravitational solitons can be used to compute
certain effective potentials in the field theory.

We will consider theories of gravity coupled to a scalar
field with potential V(¢). We require that V has a negative
maximum, so that AdS is a solution and small scalar
fluctuations are tachyonic, m? < 0. It has long been known
that tachyonic scalars in d + 1 dimensional AdS spacetime
are stable provided their mass is above the Breitenlohner-
Freedman (BF) bound [4] mBF —d?/4 (in units of the
AdS radius). It has been shown much more recently that if

szF =m?< m%F + 1, (D)

then more general boundary conditions are possible which
still admit a conserved finite total energy and preserve all
the AdS symmetries [5,6].

For definiteness, we will focus on the case of N = §
gauged supergravity in four dimensions, and comment on
generalizations at the end. This theory can be consistently
truncated to include just gravity and a single scalar field
with potential [7]
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V() = —2 — cosh(~2¢), )

so, setting 877G = 1, our action is

] d4x\/_[ R— —(V¢) +2+ cosh(\/zqﬁ)} (3)

The potential (2) has a maximum at ¢ = 0 corresponding
to an AdS, solution with unit radius. It is unbounded from
below, but small fluctuations have m? = —2, which is
above the BF bound, and satisfies (1). (This mass corre-
sponds to conformal coupling.)

In all asymptotically AdS solutions, the scalar ¢ decays
at large radius as

o) =2+ 5, @

where r is an asymptotic area coordinate, and « and 83 can
depend on the other coordinates. The standard boundary
conditions correspond to either « =0 or 8 =0 [4,8]. It
was shown in [5] that 8 = ka? (with k an arbitrary con-
stant) was another possible boundary condition that pre-
serves all the asymptotic AdS symmetries. We now
consider even more general boundary conditions 8 =
B(a). Although these will generically break some of the
asymptotic AdS symmetries, they are invariant under
global time translations. Hence there is still a conserved
total energy, as we now show.

As discussed in [5], the usual definition of energy in AdS
diverges whenever & # 0. This is because the backreaction
of the scalar field causes certain metric components to fall
off slower than usual. The complete set of boundary con-
ditions can be found in [5], but the main change is in g,

+ a2
e (lri“/z) +0(1/r) 5)

The expression for the conserved mass depends on the
asymptotic behavior of the fields and is defined as follows.
Let &€* be a timelike vector which asymptotically ap-
proaches a (global) time translation in AdS. The
Hamiltonian takes the form
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H= f &HC,, + surface terms, (6)
3

where 3 is a spacelike surface, C, are the usual con-
straints, and the surface terms should be chosen so that
the variation of the Hamiltonian is well defined. The varia-
tion of the usual gravitational surface term is given by

30[£1= 5 § dS,GHE-D By — BhuDy) ()
where Gilkl — %g1/2(gikgjl + gilgit — 2giighl) p; =
gij — &ij 1s the deviation from the spatial metric g;; of
pure AdS, D, denotes covariant differentiation with respect
to g;j, and €1 = & - n, with n the unit normal to . Since
our scalar field is falling off more slowly than usual if & #

0, there is an additional scalar contribution to the surface
terms. Its variation is simply

5041¢1= = § £50D;gs ®)
Using the asymptotic behavior (4), this becomes
50,[£] = rf(aaa)dn + f[a(a/a) + B8aldQ. (9)

Since there is a term proportional to the radius of the
sphere, this scalar surface term diverges. However, this
divergence is exactly canceled by the divergence of the
usual gravitational surface term (7). The total charge can
therefore be integrated, yielding

a2
011 = Qcl] + r § 5-d + flap + Wil
(10)

where we have defined
W(a) = f ‘ B(a)da. (11)
0

In addition to canceling the divergence in (10), the gravi-
tational surface term contributes a finite amount M,,. For
the spherically symmetric solutions we consider below,
this is just the coefficient of the 1/7° term in g,,. Since «
and B are now independent of angles, the total mass
becomes

M =47(My + aB + W). (12)

(For B = ka?, this agrees with the expression for the mass
given in [5].)

Gravitational solitons.—We want to study solitons in
this theory. These are nonsingular, static, spherically sym-
metric solutions. Writing the metric as

ds? = —h(Pe X042 + k=Y (rdr? + r2dQ,  (13)

the field equations read

2
e G A I P
r
r2
I —h~— rh,r - E(ﬁ,zrh = FZV(¢), (15)
ré’
= -0 1
X.r 5 (16)

Regularity at the origin requires # =1 and h' = ¢' =
x' = 0. Rescaling ¢ shifts y by a constant, so its value at
the origin is arbitrary. Thus solutions can be labeled by the
value of ¢ at the origin. For each ¢(0), one can integrate
these ordinary differential equations and get a soliton.
Asymptotically, ¢ behaves as (4), so we get a point in
the (a, B) plane. Repeating for all ¢(0) yields a curve
B.(a) where the subscript indicates this is associated
with solitons. This curve is plotted in Fig. 1. [Since the
potential V(¢) is even, it suffices to consider positive ¢(0),
which corresponds to positive a.] Note that solitons exist
for arbitrarily small «. When a << 1, ¢(r) is small every-
where, and one might have thought a linearized approxi-
mation should be valid, implying no solitons could exist.
This is incorrect, since for any a # 0 the backreaction is
always large asymptotically as shown in (5). Given a
choice of boundary condition B(«), the allowed solitons
are simply given by points where the soliton curve inter-
sects the boundary condition curve: B;(a) = B(a).

We can now state our prescription for choosing bound-
ary conditions to reproduce any prescribed set of solitons.
Set

Wola) = — ﬁ “By(). (17)

This function is universal, in the sense that it is indepen-
dent of our choice of boundary conditions. Now given any
smooth function V(&) with V(0) = 0, we write V =
Wy + W and take our boundary conditions to be 8 =
W/(a). It follows immediately that the extrema of V are
in one-to-one correspondence with solitons that obey these
boundary conditions:

(0
1 2 3 4 5
-0.2
-0.4¢
-0.6
-0.8
FIG. 1. The function B, obtained from the solitons.
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0=V =W, +W =—-8,+p. (18)

So the extrema of "V are precisely the points where 8, =
(. Furthermore, the mass of each soliton is given by the
value of 'V at the corresponding extremum. To see this,
remember that static solutions are extrema of the mass [9].
Suppose we choose our boundary condition to be 8 =
B.(a). For this special case, all the solitons are allowed
by the boundary conditions. Since we have a one parameter
family of static solutions, the mass must be constant; i.e.,
all the solitons have the same mass. But this includes 8 =
a = 0, which is just AdS and has zero mass. So all the
solitons have zero mass. From (12), with boundary con-
ditions 8 = B,(«a), we have

0=M,+ aB, — W, (19)

Therefore, for our general boundary condition 8 = W/(a),
we have

(20)

where we have used the fact that 8 = B,(«) for a soliton.
Thus the mass of the soliton is indeed given by the value of
V at the corresponding extremum. Notice that the only
restriction on V [that V(0) = 0] comes from the fact that
we want the total mass of pure AdS to be zero.

We have also studied the stability of these solitons. The
most likely mode to go unstable is a spherically symmetric
scalar perturbation such as the one studied for hairy black
holes in [10]. We have found numerically that this mode is
indeed unstable if V" < 0. We expect the solitons with
V' >0 to be stable. This leads to a new class of “posi-
tive” energy conjectures [11]. For given boundary condi-
tions, the minimum energy solution is expected to be static
and hence one of the solitons we have been discussing. If
V has a global minimum, then it seems likely that the
energy of any supergravity solution cannot be less than the
minimum mass soliton. Hence we are led to the following
conjecture: Given any smooth function 'V (a) with V(0) =
0 and a global minimum "V ., consider solutions to (3)
with boundary condition B = W', where W =V — W,
and Wy is given by (17). Then the conserved mass of any
nonsingular initial data set is bounded below by 47V ;.

Field theory.—We now turn to the dual field theory
interpretation. String theory on spacetimes which asymp-
totically approach AdS, X §7 is dual to the 2 + 1 CFT
describing the low energy excitations of a stack of M
two-branes. This theory is not well understood, but we
can learn something nontrivial using the gravitational sol-
itons. With 8 = 0 boundary conditions, the bulk scalar ¢
is dual to a dimension one operator 0. One way of obtain-
ing this CFT is by starting with the field theory on a stack of
D two-branes and taking the infrared limit. In that descrip-
tion [12],

0O = TrTl-jgoigof, 21

where T'; is symmetric and traceless, and @' are the adjoint
scalars.

Let Sy denote the CFT Lagrangian and consider the
deformation

S=So—k[@. (22)

Using the standard AdS-CFT dictionary, the vacuum
expectation value of O in this deformed theory is obtained
by finding nonsingular static supergravity solutions with
B = —k, but these are precisely our solitons. Given a
soliton with 8 = —k, one has (@) = «. Hence the func-
tion V(a) = W, — ka can be interpreted as the effective
potential for (©), where W, is the function (17) computed
earlier from the soliton solutions. From Fig. 1 we see that
there are three qualitatively different regions. For small £,
there is a unique soliton and hence a unique nonzero value
for (©). For intermediate values of k there are two solitons,
indicating there are two vacua, and for large k there are no
solitons, indicating there is no vacuum at all.

Since our CFT lives on §? X R (it is dual to a bulk theory
which approaches global AdS asymptotically), one might
have expected a mass term 1m?@? coming from the con-
formal coupling of the scalars to the curvature of the S2.
The radius of the S? is equal to the AdS radius, so one
expects m> = R/8 = 1/4 in AdS units. Since O is qua-
dratic in ¢, the presence of a mass term would mean that
for small k < m?/2 the vacuum would be unchanged and
(O) = 0. However, this is not what we find. Figure 1 shows
that B, is linear in « for small «, so that W, is quadratic in
a; hence the vacuum expectation value (O) is shifted even
for small k. This is illustrated in Fig. 2 for k = 1/2. For
slightly larger k a new maximum appears at larger o and
the theory becomes nonperturbatively unstable.

Now suppose we replace —k [ O in (22) with [ W(0O),
where W is an arbitrary function of @. Remarkably, the
expectation values (O) in different vacua are again given
by the extrema of V = W, + W, where W, is the same
function as above, and W is unchanged. This is because the

v
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-0.2

FIG. 2. The effective potential V(a) =W, —1a.
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FIG. 3. The effective potential V = W, —1a? + L a3
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addition of [ W(0O) to the CFT action corresponds in the
bulk to using the modified boundary conditions 8 = W'
[13], but we have already seen that the extrema of v
correspond to solitons with precisely these boundary con-
ditions. The fact that the function W does not receive any
corrections in the effective potential is surprising and
reminiscent of a nonrenormalization theorem, but we are
dealing with configurations that are far from supersymmet-
ric. Perhaps it is related to taking the large N limit or to
properties of the operators that are dual to scalars with
masses in the range (1). An example of the effective
potential in the presence of a multitrace deformation W
that yields a nontrivial false vacuum is given in Fig. 3.
Discussion.—In summary, we have seen that one can
preorder solitons in supergravity in the following sense:
Given essentially any function V(a), there are boundary
conditions such that gravitational solitons exist precisely
for each extremum of V(a) and have masses given by the
value of V at the corresponding extremum. Furthermore,
in supergravity theories with a field theory dual, the func-
tion 'V can be interpreted as the effective potential for the
dual operator O. It would be interesting to perform an
independent field theory calculation of the effective poten-
tial, for instance, in the case of a simple single trace
deformation, since this would provide a new test of AdS-
CFT. One can also extend our results from solitons to black
holes with scalar hair. One can preorder black holes either
in terms of their size or temperature. In the latter case, a

similar bulk analysis yields again a function V() that can
be interpreted as the finite temperature effective potential
for O in the dual field theory. This will be discussed in
more detail in [14].

Although we have focused on a scalar field with m> =
—2 in four-dimensional N° = 8 supergravity, the gravity
side of the story can be generalized to other dimensions
and all scalars with masses in the range (1). For asymptoti-
cally AdS,;; spacetimes, a scalar field with mass m
asymptotically falls off as

a B
=+ = 23
¢ P (23)
where
d * Vd* + 4m?
Aizfm. (24)

If the mass is in the range m3r = m?> < mjp + 1, then a
finite, conserved total energy can be defined for any bound-
ary condition B(«). The variation of the scalar surface term
is still (8), so inserting this asymptotic behavior of ¢ yields

M= Vol(Sd_l)[d—;lMo +A_aB+ (A, — A_)W}

(25)

One can again construct the soliton curve B,(«) and find
boundary conditions that admit any desired soliton solu-
tions. If a dual field theory exists, then one can again
compute effective potentials for the operators dual to the
bulk scalar field.
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