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Pixel Entanglement: Experimental Realization of Optically Entangled d = 3 and d = 6 Qudits
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We demonstrate a simple experimental method for creating entangled qudits. Using transverse-
momentum and position entanglement of photons emitted in spontaneous parametric down-conversion,
we show entanglement between discrete regions of space, i.e., pixels. We map each photon onto as many
as six pixels, where each pixel represents one level of our qudit state. The method is easily generalizable to
create even higher dimensional, entangled states. Thus, the realization of quantum information processing
in arbitrarily high dimensions is possible, allowing for greatly increased information capacity.
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Qubits, quantum mechanical two-level states, are the
analog of classical bits. Just as most classical information
processing relies on bits, qubits form the foundation of
nearly all protocols in quantum information. Extending
beyond two-level superposition states to d-dimensional
qudit states has distinct advantages. By allowing each
particle to carry d possible states instead of the usual
two, the information flux increases. Recently, several quan-
tum cryptographic protocols for qutrits and higher dimen-
sional states were shown to increase security against
eavesdropping attacks [1-3]. Furthermore, since entangled
states [4] play a key role in many applications of quantum
information including quantum key distribution [5], the
secure sharing of information, dense coding [6], the encod-
ing two classical bits onto a single photon of a biphoton
pair, and teleporation [7], the remote reconstruction of a
quantum state, methods for creating entangled qudits are of
particular interest.

Traditionally, spontaneous parametric down-conversion
(SPDC) has offered a straightforward method for creating
entangled photon pairs. To date, much of the work with
optically entangled pairs concentrates on the polarization
entanglement of photons created in SPDC [8]. In general,
though, type-II down-converted photon pairs are entangled
in continuous variables as well, such as in transverse
momentum and position [9-14], which has proved useful
in quantum imaging [15-17]. It was recently shown that
position-momentum entangled photons created in SPDC
violate separability criteria by 2 orders of magnitude [18].

In this work, we perform a proof-of-principle experi-
ment that creates entangled qudits from the entangled
transverse-momentum and position spaces of SPDC. The
positions and transverse momenta of the entangled pairs
are imaged into discrete regions of space forming our
qudits. Thus, the system displays pixel entanglement.
Alternative methods have been demonstrated for creating
entangled qudits, but they suffer from complications when
trying to generalize them to higher dimensions. For in-
stance, angular momentum properties of light have been
shown to create higher dimensional states [19,20], but the
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diffraction efficiencies of computer-generated holograms
limit the number of levels possible [21]. In addition, states
with 11 levels have been realized using time binning [22].
This technique’s reliance on time entanglement makes it
challenging to implement in quantum information proto-
cols. Further methods involving multiport beam splitters
have been proposed, but to the best of our knowledge they
have not been experimentally realized [23]. Also multipair
polarization-entangled photons were demonstrated to obey
spin-1 statistics [24], but these states are produced with less
efficiency than the biphotons considered in our method.
Additionally, our method is experimentally simple to real-
ize and to generalize to high dimensions.

We used type-II phase-matching conditions for degen-
erate, nearly collinear SPDC. Because of momentum con-
servation, the two down-converted photons, A and B (see
Fig. 1), are anticorrelated in transverse momentum q,4 g. In
the limit of an infinite plane-wave pump field, the emitted
photons are in a maximally entangled EPR output state,
with delta function correlations in transverse momentum
[16]. Thus, although each photon is emitted with a range of
transverse momenta, measuring the momentum of one
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FIG. 1. Visualization of pixels in the down-conversion process
for the case of transverse-momentum entanglement. The photons
are emitted with anticorrelated transverse momenta kK, , kg,
within a range Ag,. The sum of the two momenta are uncertain
over a range 6¢, which is determined by the angular spread of
the pump beam.
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uniquely determines the momentum of the other. In prac-
tice, the pump beam is not an infinite plane wave, but rather
a Gaussian beam with a finite waist. In this case, the
correlations are no longer perfect. Instead, based on the
approach in [11], the two-photon term of the output state is
a superposition of Fock states |14,)|14,) given by

|y = Nfdqu[dquE(qA + qp)

eiAkzL -1
X W“q/)ll%%
with normalization constant N, longitudinal wave-vector
mismatch Ak, = k, — ks — kp_, nonlinear crystal length

L, and angular spectrum of the pump field E(q). The
measurement of one photon’s momentum determines the
other’s within a small region of uncertainty. This uncer-
tainty or correlation area defines a limit to the system’s
resolution. The correlation length in momentum space
8q; = {(qu + qp)?)"/? thus gives an estimate to the mo-
mentum pixel size in transverse dimension i = x, y. In the
focal plane of a lens, this length maps into real space

through the relation qu-x) = 8q;(Af/2). Entangled pho-
tons are strongly correlated in position as well. Thus, we
can correspondingly define a correlation length in position
as 8x; = (x4 — x5)?)"/2, where the position representa-
tion of the state is simply a Fourier transform of the state in
the momentum basis. We can discretize this two-photon
state by considering each pixel, i.e., a discrete region of
space, as a distinct quantum level. These regions, however,
must be separated by a distance larger than the parameters
8x, 8™ to ensure nearly perfectly correlated or anticorre-
lated fields when measuring photon coincidences in posi-
tion or transverse momentum. Under these assumptions,
we can describe the two-photon state as an entangled
d-level qudit state.

We first considered the case of three entangled pixels for
which d = 3. We performed an experiment that images
either the position or the transverse momentum of the
entangled photons emitted from the face of a 2-mm-thick
[B-barium borate (BBO) crystal onto a triangular optical
fiber array of multimode fibers with core and cladding
diameters of 62.5 and 125 um, respectively (see Fig. 2).
The coincidences of detection events involving the fibers in
arms A and B were measured. The crystal was pumped by a
30 mW, cw beam at 390 nm with an rms intensity width of
0.17 mm. The orthogonally polarized entangled pair, emit-
ted at 780 nm, was separated using a polarizing beam
splitter. To measure the position of an emitted photon, we
use only lens L;, which images the exit face of the BBO
crystal onto the cleaved ends of the fibers. Lens L; used in
combination with lens L, ; performed a measurement of
the transverse momentum of the photon. Here, the Fourier
transform properties of lenses were employed to map
transverse momentum into positions in the back focal
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FIG. 2 (color online). Experimental configuration used for
measuring photon spatial and momentum correlations.
Dichroic mirrors (DM) filter out the pump light. Lenses L,
L,, L3 have focal lengths of 100, 50, and 50 mm, respectively.
The Dove prism (DP) inverts the image in momentum measure-
ments. The distances indicated are the same in both arms.

plane. A 10-nm-wide spectral filter placed before the
imaging objectives limited the detection to photons of
near degenerate frequency. Since the transverse momenta
of the entangled pair are anticorrelated, a Dove prism was
used to rotate the beam by 180°. The rms intensity width of
the field is 0.41 mm in the position detection plane and
0.48 mm in the transverse-momentum detection plane.
Thus, the fiber array fills the entire field in both planes,
ensuring that we sample the photons equivalently for each
measurement. The correlation lengths in real space, after
accounting for system magnifications, were calculated to
be 8x = 50 wm and 8¢%” = 15 wm, both smaller than the
fiber separation. Thus to reasonable approximation our
state is an entangled qudit state.

We observed coincidences between the photons in
each of the arms for each possible lens configuration.
The results are shown in Fig. 3. We normalized all the
graphs to the 3,35 peak in Fig. 3(a), corresponding to 475
coincidences/second, also taking into account the fiber
transmission coefficients. When both arms were config-
ured to measure in the same basis, three sharp coincidence
peaks occurred. The absence of any prominent off-
diagonal peaks demonstrates that the two-photon state
can be adequately described as a qutrit state. In the position
basis, these peaks correspond to correlated pixels, and in
the transverse-momentum basis, they correspond to anti-
correlated pixels. We note near perfect correlations exist
when imaging in both the position and the momentum
spaces. The conditional uncertainty product is estimated
to be Ax,pAgup = 0.13 where we assume the distance
between two neighboring pixels (separated by 125 pwm)
represents the 1/e? radius of the conditional distributions,
justified by the high visibility observed. This uncertainty
product is well below the classical limit of 0.5, demonstrat-
ing that the photon pairs are entangled in both position and
momentum, a well-established property of SPDC [14,18].
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FIG. 3 (color online). Normalized coincidence counts between
photons in the two arms, when both arms measure (a) photon
position and (b) photon transverse momentum, as well as when
the arms measure (c),(d) conjugate variables.

When the two arms are set to measure conjugate varia-
bles, i.e., one measuring position and one measuring mo-
mentum, we expect a uniform distribution of coincidences
among all nine possible pixel combinations. As seen in
Figs. 3(c) and 3(d), there is a nearly flat distribution of
coincidences, indicating that the pixels are uncorrelated.
This property is important for quantum cryptography, since
a measurement in conjugate bases yields nine possible
results, decreasing the odds of successfully eavesdropping
in comparison to a qubit system.

We also investigated the scalability of the process by
considering the case d = 6. We scanned a single fiber in
the detector planes through six positions, creating a pixel
array and measured coincidences as before. The results are
depicted in Fig. 4, normalized again to the highest peak.
They show the behavior required for quantum information
applications, namely, highly correlated and anticorrelated
pixels when measuring the photons’ position and trans-
verse momentum and an even distribution of correlations
when measuring conjugate variables. Although, as a scan-
ning system, this system does not realize the increased
information flux advantage of qudit systems, it shows
that this technique scales and can produce six-level qudit
states.

The question of how many realizable states are possible
remains. Intuitively, the number of states should be the
square of the ratio of the total field width to the correlation
length, within an appropriate pixel-spacing factor to miti-
gate unwanted cross-pixel correlations. Alternatively, the
Schmidt number is a measure of the effective dimension of
the entangled state and can set an upper bound to the
number of pixels. Recently, Law and Eberly estimated
the Schmidt number for parametric down-conversion to
be K = (Aq/28q)* where (Aq)?> = (g?) is the rms spread
of the transverse wave vector of the down-converted pho-

321654 12345612ArmB
Arm A

FIG. 4 (color online). Normalized coincidence counts between
two six-pixel arrays when both arms measure (a) photon position
and (b) transverse photon momentum, as well as when the arms
measure (c),(d) conjugate variables. The inset shows the pixel
array configuration.

ton and &¢ is defined as before [25]. This agrees with the
intuitive result in the transverse-momentum basis. In posi-
tion space, we can define a similar bound N = (Ax/26x)?.
For our system we find N = 16, which is significantly less
than the calculated Schmidt number K = 360 since, in
general, the Schmidt modes are not well localized in space.
Hence, all K levels are not realizable as localized pixels in
both the position and the transverse-momentum bases.
Even so, N is highly scalable since Ax depends only on
the pump waist and 6x depends only on the crystal length
and phase-matching conditions.

Each of these N states, in position space, for example, is
conjugate to the entire transverse-momentum space and
vice versa. Hence these can be considered qudits, but not in
the usual sense. This property appears to be advantageous
in quantum key distribution. In this case, one wants to
effectively detect the presence of an eavesdropper while
maximizing the number of highly correlated pixels. We
consider an eavesdropper Eve intercepting a signal sent
from Alice to Bob using a quantum cryptographic protocol.
Eve’s presence is typically revealed when Alice and Bob
measure in the same basis and Eve measures in the con-
jugate basis. After Eve’s measurement, the photons of
Alice and Bob will be uncorrelated and found anywhere
in the detection plane. Thus, if a photon is detected, it will
be randomly measured in one of the N states, increasing
the bit error rate (BER) and resulting in a nonviolation of
the EPR bound. Additionally, because of the detection
“dead” area, Eve will cause a drop in the overall key
generation rate. For practical purposes, sufficient dead
area is required to ensure high visibility correlations and
low BER due to the finite correlation widths of the source.
In practice, photons in this area would still be collected for
security purposes, but would not contribute to key genera-
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tion. Hence, these dead areas actually provide an additional
signature for the presence of eavesdropping. At present, we
envision this system to be useful for cryptographic appli-
cations in free-space applications because the quality of
entanglement strongly depends on the preservation of the
wave front, which cannot be done using current fiber
technologies.

In summary, we have experimentally demonstrated a
simple method for producing entangled qudits using the
two-photon output of type-II SPDC. We created qutrits
using a three-pixel detector array and investigated six-level
qudits. The method is easily extended to higher dimen-
sional qudits. The number of levels possible is restricted
ultimately only by the Schmidt number which can be
engineered to be large [25]. Very high dimensional en-
tangled states are therefore easily conceivable using the
position and transverse-momentum entanglement of
SPDC, though for applications in quantum cryptography
it may be beneficial to use only a small fraction of these
states. This method presents a simple, yet powerful, tool
for investigating entangled qudit states for quantum infor-
mation protocols.
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