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Synchronization is Enhanced in Weighted Complex Networks
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The propensity for synchronization of complex networks with directed and weighted links is consid-
ered. We show that a weighting procedure based upon the global structure of network pathways enhances
complete synchronization of identical dynamical units in scale-free networks. Furthermore, we numeri-
cally show that very similar conditions hold also for phase synchronization of nonidentical chaotic
oscillators.
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Networks of dynamical units constitute models of many
natural systems. Examples range from biological and
chemical oscillators to electrical power grids and transpor-
tation networks [1]. Many of these networks exhibit com-
plex topological properties such as the small-world and
scale-free properties [2]. Small-world (SW) networks [3]
are objects in between regular and random networks char-
acterized by a small average distance between any two
nodes (scaling logarithmically rather than linearly with the
network size), while keeping a relatively highly clustered
structure. Scale-free (SF) networks [4] are examples of SW
networks displaying a power-law distribution p�k� � k��

in the node connectivity k (degree).
In recent years, complex networks have provided a fresh

and increasingly challenging framework for the study of
collective (synchronized) behaviors, based on the interplay
between complexity in the overall topology and local
dynamical properties of the coupled units. As an example,
SW wirings have been proven to enhance synchronization
as compared with regular topologies [5,6]. Initially, this
enhancement was attributed to the decreasing of the
smaller average network distance between nodes. In fact,
synchronization can be affected by several other quantities,
as recently manifested in Ref. [7], where increasing the
heterogeneity in the connectivity distribution at the same
average network distance eventually leads to a deteriora-
tion of synchrony [7].

A basic assumption of previous works is that the local
units are symmetrically coupled with undirected coupling
strengths (unweighted links). However, in many circum-
stances this simplification does not match the peculiarities
of real networks. In ecological systems, for instance, the
nonuniform weight in prey-predator interactions plays a
crucial role in the food web dynamics [8]. The traffic load
of a road, or the number of passengers in subways lines or
airports, are critical quantities in the study of transportation
networks [9]. Similarly, the natural differences of neurons
and their dendritic connections result in distinct capabili-
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ties of transmission and information processing in neural
networks [10].

In this Letter, we give evidence of the constructive role
of asymmetric and weighted wirings on the synchroniza-
tion of coupled oscillators. By exploiting the global struc-
ture of shortest paths among nodes in the wiring, the weight
of a link will be related to its load, which measures the
fraction of shortest paths in the network that are making
use of that connection, and is qualitatively related to the
traffic of communication passing through it [11]. Namely,
(i) we assess the network propensity for synchronization
(PFS) via the distribution of the coupling matrix eigenvalue
spectra [6,12] as a function of the relative importance of
the link loads, and (ii) we give evidence that varying the
weighting procedure gives optimal conditions for synchro-
nization in a class of SF networks with different degree
distributions. Moreover, we find a suitable generalization
of this procedure to optimize the phase synchronization of
nonidentical oscillators.

We start by considering a network of N linearly coupled
identical oscillators. The equation of motion reads

_x i � F�xi� � �
XN

j�1

GijH�xj�; i � 1; . . . ; N; (1)

where _x � F�x� governs the local dynamics of the vector
field xi in each node, H�x� is a linear vectorial function, �
is the coupling strength, and G is a coupling matrix.

Let us consider the case where G has a real spectrum
(as, e.g., in symmetric coupling). Stability of the synchro-
nous state [xi�t� � xs�t�;8i] can be accounted for by di-
agonalizing the linear stability equation, yielding N blocks
of the form _�i � JF�xs��i � �iH��i� (where J is the
Jacobian operator). The blocks only differ by 1 	 
 
 
 	
i 	 
 
 
 	 N (the eigenvalues of G). Replacing �i by �
in the equation, the behavior of the largest Lyapunov
exponent vs � [also called master stability function [12]
(MSF)] fully accounts for linear stability of the synchro-
nization manifold. Namely, the synchronized state (asso-
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ciated with 1), is stable if all the remaining blocks (asso-
ciated with i, i � 2; . . . ; N) have negative Lyapunov ex-
ponents. For a large class of oscillatory systems, the MSF
is negative in a finite parameter interval Ist � ��1 	 � 	
�2� [12]. The stability condition is satisfied when the whole
set of eigenvalues (multiplied by �) enters the interval Ist.
This is accomplished when simultaneously �2 > �1 and
�N < �2. As �2 and �1 depend on the specific choice of
F�x� and H�x�, the key quantity for assessing PFS of a
network is the eigenratio N=2, which only depends on
the topology of the network. The smaller N=2 is, the
more packed the eigenvalues of G are, leading to an
enhanced � interval for which stability is obtained for
any choice of F�x� and H�x� [6].

A first attempt at assessing enhancement of synchroni-
zation due to weighted connections was proposed in
Ref. [13], where the coupling factor in the right hand
side of Eq. (1) was taken to be �

k�i
�N

j�1MijH�xj� (Mij being

the Laplacian matrix). This asymmetric wiring provides a
spectrum of real eigenvalues, and an optimal condition
� � 1 for synchronization was found [13]; note that such
a weighting procedure only retains information on the local
features of the network (the node degree).

We show that further enhancement in synchronization
can be achieved by exploiting the information contained in
the overall topology, i.e., by scaling the coupling strength
to the load of each link. The load ‘ij of the link connecting
nodes i and j quantifies the traffic of shortest paths that are
making use of that link [11], and therefore it reflects the
network structure at a global scale (its value can be
strongly influenced by pairs of nodes that may be very
far away from either nodes i and j). Precisely, for each pair
of nodes i0, j0 in the network, we count the number n�i0; j0�
of shortest paths connecting them. For each one of such
shortest paths, we then add 1=n to the load of each link
forming it. A schematic example of such weighting proce-
dure is sketched in Fig. 1.

The network equation reads:

_x i � F�xi� �
�

�j2Ki
‘�ij

X

j2Ki

‘�ijH�xi � xj�; (2)
a b c

FIG. 1. Schematic representation of the weighting procedure.
The link thickness is proportional to the link load, while the node
colors reflect the node degrees (white, black, and gray corre-
spond to nodes with low, high, and medium degrees, respec-
tively). In general, nodes with low degrees (like node b) may
have links with very high loads, and nodes with high degrees
(like nodes a and c) may have links with low loads.
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where � is a real tunable parameter, and Ki is the set of
neighbors to the ith node.

An important property of our coupling scheme is the
nature of the coupling matrix G, defined by comparing
Eq. (2) with Eq. (1). The diagonal elements of G are always
normalized to one. Such normalization prevents the cou-
pling term from being arbitrarily large (or arbitrarily small)
for all possible network topologies, thus making it a mean-
ingful realization of what happens in many real world
situations (as, e.g., neuronal networks) where the local
influence of the environment on the dynamics does not
scale with the number of connections. Although G is
asymmetric for all �, it can be written as a product G �
QL, where L is a zero row-sum matrix with off-diagonal
entries Lij � �‘�ij, and Q � diagf 1

�j‘�1j
; . . . ; 1

�j‘�Nj
g. Using

matrix identities [14], the eigenvalue spectrum of G is the
same as that obtained from the matrix W � Q1=2LQ1=2,
and therefore is real with nonnegative values, and all the
arguments of the MSF approach apply. Moreover, because
G has a zero row sum, the smallest eigenvalue 1 is zero
[14], while 2 > 0 for connected networks, and i 	 28i
[14,15]. Furthermore, Gerschgorin’s circle theorem [16]
guarantees in our case that the relationship 0< 2 	 N 	
2 holds for connected networks independently on the net-
work size N. Another important point to be stressed con-
cerns the various limits the coupling term can assume when
changing �. The limit � � 0 corresponds to the best
synchronizability condition of Ref. [13]. From Eq. (2) we
see that in the limit � � �1�� � �1� only the links with
the largest (smallest) loads ‘ij are selected as the incoming
links for each node i. Therefore this induces a network with
at least N directed links, which can be either connected or
disconnected. In the connected (disconnected) case, the
ratio N=2 will be equal to 2 ��1�, thus yielding a very
strong (very weak) condition for synchronization.

By varying � in Eq. (2), and by monitoring the ratio
N=2 of the coupling matrix G, we can now study the PFS
of a class of SF networks with different degree distribu-
tions, as well as of random networks. The used class of
scale-free networks is obtained by a generalization of the
preferential attachment growing procedure introduced in
Ref. [4]. Namely, starting from m� 1 all to all connected
nodes, at each time step a new node is added with m links.
These m links point to old nodes with probability pi �
ki�B

�j�kj�B� , where ki is the degree of the node i, and B is a

tunable real parameter, representing the initial attractive-
ness of each node. This procedure allows a selection of the
� exponent of the power-law scaling in the degree distri-
bution [2] [p�k� � k���B;m�], with ��B;m� � 3� B

m in the
thermodynamic (N ! 1) limit. While the average degree
is by construction hki � 2m (thus independent on B), the
heterogeneity of the degree distribution can be strongly
modified by B. This induces convergence of higher order
moments of p�k�, in contrast with the case B � 0, that
recovers the preferential attachment rule originally intro-
duced in Ref. [4].
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Figure 2(a) shows the logarithm of N=2 in the pa-
rameter space (�;B) for SF networks. The first crucial
observation is that the surface of N=2 has a pronounced
minimum at 0< ~� ’ 1 for all values of B above a given
Bc > 0. Because here � � 0 recovers the optimal condi-
tion when only the information on node degrees is used
(the condition � � 1 in Ref. [13]), this indicates that
our weighting procedure based on the link loads al-
ways enhances the network PFS. This is quantified in
Fig. 2(b), where we report the quantity � � log�N=2� �
�log�N=2��j��0 in the parameter space. The large region
of negative values of � corresponds to topological struc-
tures (B) and weighting configurations (�) providing better
synchronization propensities than a weighting process
based on the node degrees.

This result indicates that conveying the global com-
plex structure of shortest paths into a weighting procedure
gives in that range a better criterion for synchronization
than solely relying on the local information around a node.
With increasing �, the enhancement region is limited for
B> Bc [see the upper black line in Fig. 2(b)]. The reason
for this is that increasing � above ~� introduces two effects:
the first is that it makes it more likely that a unidirected tree
structure appears in the network, and the second is that it
increases the chance of disconnecting the network. These
two effects are competing to determine synchronous be-
havior, insofar as the former increases the likelihood of
synchronization only if the network remains connected.
Therefore, a second critical value �c�B�> ~� can be ex-
pected such that the disconnection mechanism dominates
the tree structure induction if B> Bc. In all our results, N
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FIG. 2 (color online). (a) N=2 (in logarithmic scale) for SF
networks vs the dimensionless parameter space (�; B). (b) � (see
text for definition) vs (�;B). In all cases m � 2, and the graphs
refer to averaging over 10 realizations of networks with N �
1000. The domain with �< 0 is outlined by the black contours
drawn on the figure.
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has been varied from 500 to 1000 without significant
qualitative differences.

While our study focused on m � 2, results for larger m
values (not reported here) show the following changes in
the scenario: increasing m diminishes the value of ~�, and it
increases the likelihood of disconnecting the network in
the limit � ! 1, thus inducing Bc ! 0. In the opposite
limit, m � 1 always ensures that the network remains
connected at � ! 1, regardless of B.

For comparison, we also apply our coupling scheme to a
class of networks with high homogeneous degree distribu-
tion, represented by random networks obtained as in
Ref. [3]. Precisely, starting from a ring lattice of N nodes
connected with their m � 2 nearest neighbors, each near-
est neighbor connection is substituted with probability 0 	
p 	 1by a link that points randomly to another node in the
network. The situation with random networks (p � 1) is
illustrated in Fig. 3. Figure 3(a) reports the behavior of
log�N=2� vs �, indicating that here also our weighting
procedure based on link loads enhances the network PFS
(the minimum of the curve is always positioned at 0< ~� ’
1); while Fig. 3(b) reports the comparative quantity �c �
�log�N=2��SF � �log�N=2��random in the parameter
space (�;B), indicating that for all �> 0 weighted SF
configurations provide better topologies for inducing a
synchronized behavior than random networks. The analy-
sis of the whole SW regime (0< p< 1) reveals that PFS in
general increases with p, but still the minimum of N=2

remains at ~� ’ 1. A more detailed account of this regime
will be reported elsewhere.

It is crucial to emphasize that the conditions for optimal
synchronization discussed so far rigorously apply only for
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FIG. 3 (color online). (a) N=2 (in logarithmic scale) for
random graphs vs �. (b) �c (see text for definition) vs (�; B).
Random networks have hki � 2m � 4, identical to that of SF
networks. In the domain where �c < 0 SF networks synchronize
better than random networks. Same stipulations as in the caption
of Fig. 2.
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FIG. 4 (color online). The phase order parameter � (see text
for definition) vs � for nonidentical chaotic Rössler oscillators.
All parameters are specified in the text. Data refer to averages
over 10 different realizations of SF networks with B � 10, m �
2, and N � 1000. The inset is a zoom of the dashed region, with
the corresponding error bars.
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complete synchronization [17] of identical systems [6,12].
Considering a complex network of coupled nonidentical
oscillators is, however, very relevant for many practical
situations. In this case, the theory of MSF cannot be
applied, since (i) for nonidentical systems a complete
synchronization invariant manifold (xi � xs;8i) cannot
be defined and (ii) such systems may also display weaker
degrees of synchronization, such as phase synchronization
[17]. Nevertheless, numerical evidence shows that the
eigenratio N=2 still provides a qualitative description
in this case. Indeed, we implemented a SF network of
nonidentical chaotic Rössler oscillators. The dynamics is
ruled by Eq. (2), with xi � �xi; yi; zi�, F�xi� � Fi�xi� �
��!iyi � zi; !ixi � 0:165yi; 0:2� zi�xi � 10��, and
H�x� � x. Here !i is the natural frequency of the ith
oscillator, which is randomly assigned from a Gaussian
distribution with mean value !mean � 1 and standard de-
viation �! � 0:02.

Phase synchronization in this network can be character-
ized by monitoring the order parameter [17] � �

h1N j�
N
i�1e

j'i�t�jit, where 'i�t� � arctan�yi�t�xi�t�
� denotes the

instantaneous phase of the ith oscillator, and h. . .it stays
for a time average. If all oscillators rotate independently,
�� 1=

����
N

p
. In contrast, if their motions are phase synchro-

nized then �� 1.
Figure 4 shows the behavior of � vs � for B � 10 and

for various values of � (similar results hold for other B>
0). Remarkably, the observed phase synchronization sce-
nario reflects qualitatively the results of Fig. 2(b). Indeed,
for � � 1 (dashed line in Fig. 4), the � range for which
�� 1 is larger and therefore provides a better phase
synchronization than the case � � 0 (continuous line). In
the other two curves in Fig. 4 (� � �1 and � � 5) the
synchronization scenario is worse than the case � � 0.
Since these � values are outside the enhancement region
in Fig. 2(b), this confirms that the MSF arguments also
21870
constitute a good criterion to assess network PFS in the
case of nonidentical dynamical units. PFS is improved if
the interval � for which �� 1 increases. Note that, upon
variation of �, a smooth transition towards a phase syn-
chronized state occurs, while for identical oscillators a
sharp (first order) transition is expected [18].

In conclusion, we have shown that a weighting proce-
dure based upon the global structure of network pathways
yields a PFS higher than one based on the local information
of nodes. Similar conditions were numerically found for
phase synchronization in networks of coupled nonidentical
units. The method can therefore have applications for the
modeling of real networks where the synchronization of
nonidentical units occurs. Examples are the synchronized
oscillations in transcriptional regulation or neural net-
works, the study of information flows in signaling net-
works, as well as epidemiological models.
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