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Gravitational Collapse of Colloidal Gels
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We present a unified framework for understanding the compaction of colloidal gels under their own

weight. The dynamics of the collapse are determined by the value of the gravitational stress o
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compared to the yield stress oy of the network. For o, < gy, gels collapse poroelastically, and their rate
of compression decays exponentially in time. For o, > oy, the network eventually yields, leading to rapid
settling. In both cases, the rate of collapse is backflow limited, while its overall magnitude is determined
by a balance between gravitational stress and network elastic stress.
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In the presence of attractive interactions, colloids can
aggregate into ramified, fractal clusters, whose density
decreases as their size increases. As a result, they can, in
principle, grow to form a space-spanning network, or gel,
at arbitrarily low volume fractions ¢. The networks formed
through colloid aggregation are crucial for controlling the
rheological properties of complex materials, including
many food and personal care products; thus it is important
to understand the limits of their stability. Ultimately, gel
formation is constrained by gravity, which can impose a
size-limiting strain on the aggregates [1], or drive sedi-
mentation before a network can form [2]. Moreover, even
after gels form, they can be mechanically unstable; at low
¢, or for weak interparticle attractions U ~ kgT, they
collapse to form a loose sediment at the bottom of the
container. Network collapse is ubiquitous; it is observed
for gels made from a variety of materials, and for a wide
range of U [2-9]. Qualitatively, collapse can occur
smoothly, at a rate that decreases with time; alternatively,
it can occur in distinct stages, characterized by a slow ini-
tial compression, after which gels undergo significant re-
structuring and rapid sedimentation, followed by a slow
final compression to an equilibrium height. In the case of
gels with a tunable depletion attraction with a short range,
collapse dynamics switch from steady, or “‘creeping’’ sedi-
mentation to three-stage, or “delayed” sedimentation as U
is decreased [6]. Collapse has been attributed to network
aging properties for weak attractions [3,6,8,9], or rheologi-
cal properties for strong attractions [10]. However, no gen-
eral framework has emerged that can account for the rich
collapse phenomena that are common to so many systems.

In this Letter, we present a single framework that ac-
counts for much of the diverse behavior observed in col-
lapsing colloidal gels. We study the prototypical case of
strongly attractive colloidal gels, whose structural and
rheological properties are well characterized [11,12]. For
gels formed in short sample cells and at high ¢, the height
of the gel falls at a rate which decays exponentially with
time, until it reaches a final equilibrium height, determined
by the balance between the network elastic stress and the
gravitational stress. For taller sample cells and lower ¢,
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gels initially exhibit the same behavior; however, they sub-
sequently undergo a rapid, catastrophic collapse, which oc-
curs because the network is ultimately unable to bear its
own weight. At short times, the two cases are indistinguish-
able, and we show that the rate of collapse of the gel is
limited by the backflow of the solvent through the solid
network. Consistent with this, the initial rate of collapse
decreases with increasing ¢, in a manner compatible with
Darcy flow, independent of late-time behavior. We present
a model for the collapse rate based on the theory of
poroelasticity; this takes into account the resistance to
compression arising from a combination of the fluid pres-
sure and the elasticity of the network. For networks under-
going creeping sedimentation, the theory captures the full
collapse behavior. For weakly elastic gels, the theory cap-
tures the initial collapse behavior; however, the details of
the rapid collapse are more complicated, and are presum-
ably linked to their nonlinear yield and shear-thinning
properties.

We use aqueous solutions of charge-stabilized silica
spheres, Ludox AS-40, with radius a = 10.5 nm. To ini-
tiate aggregation, we add a divalent salt, MgCl,, to a final
concentration of 20 mM; at this ionic strength particles
experience a strong van der Waals attraction, and thus
undergo primarily diffusion-limited cluster aggregation
(DLCA) [13]. The resultant aggregates have a fractal di-
mension dy ~ 1.9, with a size distribution sharply peaked
about an average cluster size R,.. Clusters grow until R, ~
a¢'/\4r=3 at which point they span space, and form a gel
[11]. We study gels at a range of volume fractions, 1073 <
b < 1072; the DLCA time for gelation at these concen-
trations is <1 min. The density difference between the
particles and the solvent is Ap = 1.17 g/cm?, which can
result in gravitational stresses large enough to cause col-
lapse in macroscopic samples. Experiments are performed
in rectangular cells of height 4y = 3.5 cm and width w =
2 cm; cells are completely filled and sealed to ensure a
horizontal interface, eliminating any effects of a curved
meniscus. Cell depth was varied between 0.2—-2 cm, with
no change in collapse behavior. The gels are imaged with a
CCD camera to capture the collapse kinetics.
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As the samples settle, a sharp interface appears between
the highly turbid gel and the clear supernatant. For all
samples, there is an initial stage during which the collapse
rate, v, is nearly constant; v, increases with decreasing ¢
as shown in Fig. 1 (inset). At the highest volume fractions,
¢ >3 X 1073, the collapse proceeds smoothly to the equi-
librium height as shown in Fig. 1 where we plot the time
evolution of the interface height h(z). For ¢ <3 X 1073,
there is also an initial slow collapse, but this is followed by
a rapid collapse. This suggests that there is a common
mechanism governing the initial collapse, independent of
the long-time behavior.

In the initial stage of collapse, the network may be
slowly compressing like a solid under its own weight;
alternatively, it could be a fluid of aggregates which settle
collectively [2]. To distinguish between these possibilities,
we place a small plastic block of the same thickness but
about half the width of the cell in the bottom corner of a
sample chamber. As the top interface drops, a crack ap-
pears at the edge of the block, extending upwards through
the gel; at the same time, the top interface is deformed, as
shown schematically in Fig. 2 (inset). The appearance of
this crack confirms that there is indeed an elastic network.
The part of the network adjacent to the block is under
stress; as it compresses, it creates a shear plane at the
edge of the incompressible block, leading to crack forma-
tion. The difference in strains on the two sides persists
through the gel, resulting in a step in the top interface
which reflects the boundary condition at the bottom of
the cell. Eventually, at the onset of the rapid collapse, the
interface flattens indicating that the sample becomes a fluid
as the gel is broken apart.

While the effects of gravitational stress are observable
through the deformation of the solid network, the gels must
expel fluid in order to compress. We hypothesize that the
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FIG. 1 (color online). Interface height as a function of time
since initialization for ¢ = 0.01 (), 0.012 (O), 0.02 (A),
0.022 (V), 0.04 (®), and 0.08 («). Inset: blowup of the short-
time collapse.

backflow of the fluid through the network limits the rate of
compression of these gels, and hence determines their
initial collapse. The interstitial fluid is under a pressure P
due to the weight of the gel; thus, it flows at a velocity v
within the porous and deformable network, leading to a
local displacement of the solid of w(z, f) in the z direction.
Using Darcy’s law,

1— - = .
( ¢)<V ot n 0z
where k is the permeability of the gel and 7 is the fluid
viscosity. Because the rate at which fluid is expelled from a
material element equals that rate at which solid enters,

v 0w

(1=¢) 9z *é dzot 0 @
Since ¢ < 1 — ¢, Eq. (2) implies that » = 0. At short
times, the gel is uncompressed and the elastic stress is
negligible, so that dP/dz = —Apgd¢, and consequently
Eq. (1) yields ky = — b 97 (t = 0). To test this hypothe-
sis, we use measurements of the initial velocity of the gel
interface to determine the dimensionless permeability
ko/a* as a function of ¢, shown as open symbols in
Fig. 2. We extend our range of ¢ by also performing
experiments with larger silica spheres, Nissan MP-1040,
with radius a = 50 nm. We also plot previously pub-
lished data from strongly aggregated calcium carbonate
gels [2], and depletion-attracted colloid-polymer mix-
tures [6]. Remarkably, all of the data fall onto a single
curve. To understand this, we compare the observed per-
meability with that derived from the Stokes’s velocity for a

10"
10°F
10°

.

3 10
2710
10°

10'

10 Lo

T T

@\

T T T Ty

Ty

FIG. 2 (color online). Scaled permeability as a function of ¢,
experiment values for: silica, a = 10 nm (H); calcium carbo-
nate, a = 35 nm (O); PMMA, a = 186 nm (A); silica, a =
50 nm (V). Permeability calculated using hard sphere model
(dotted line), Carman-Kozeny model (dashed line), and cluster
size (solid line). Inset: schematic of setup with light shaded
block to test for presence of elastic network.
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suspension of isolated spheres, k; = % (dotted line), and

that given by the semiempirical Carman-Kozeny relation,

ko = % [14], (dashed line). Here, the factor of 45 is

an estimate of shape and tortuosity factors based on ex-
perimental results, and is reasonably successful for many
types of granular materials, particularly at high ¢ [14].
Both expressions underestimate the experimental perme-
ability. Instead, if we consider the characteristic pore size
to be set by the largest length scale in the system, the
cluster size R,., the permeability is ky ~ z/f‘%,d[), with a
prefactor of order 1. This gives excellent agreement with
all of the data, as shown by the solid line in Fig. 2. This
scaling relationship is based on a more realistic description
of the tenuous fractal geometry of the porous medium and
thus, the good agreement with the data lends valuable
physical insight as to the origin of the permeability.
Furthermore, this confirms our hypothesis that the initial
rate of collapse is determined by the backflow of the fluid.

At long times, contributions from the network elasticity
must become important, since the deformation of the net-
work is no longer negligible. At the highest volume frac-
tions, ¢ >3 X 1073, the gel height smoothly approaches
an equilibrium value, h;, which is determined by the
balance between gravitational stress and elastic forces.
The gravitational load increases linearly with ¢; o, ~ ¢,
while the shear and bulk moduli increase as a power law,
G’ ~ ¢”, with exponent v ~ 3.2-3.9 [12,15,16]. Thus, we
expect that gravitational loading should result in smaller
strains as ¢ is increased; this is confirmed by the data, as
seen in Fig. 1.

At short times, the gravitational stress is balanced by the
stresses due to fluid flow, while at long times it is balanced
by the network elasticity. At intermediate times, we expect
both to play a role. For Darcy flow the dominant contribu-
tion to the fluid stress comes from the fluid pressure, which
is much larger than the viscous stresses. Thus, the constit-
utive equation for a poroelastic gel having an elastic
modulus E [17] is given by

c=E2 (1 - ¢ 3)
9z

The stress gradients in the gel are balanced by gravity so
that
oo

—— = —Apgg. )
0z
The initial displacement is zero, and at the lower boundary
there is no displacement or fluid flux while at the upper
boundary the hydrostatic pressure is negligible and the
fluid is free to flow across the boundary. This provides
the initial and boundary conditions,
aP

=—=0 atz=0,
w 9z Z

w=0 atr=0,

&)

d
EX—p=p at z = h(r).
0z

The initial-boundary-value problem, Egs. (1)-(5), is a
variation of the problem of consolidation of a column of
fluid-filled soil [18,19] and may be solved using separation
of variables, giving

hy — h(1) = AR(1 — e71/7), (6)

where the initial height is &, the total change in height

is Ah = %, and the time scale for the collapse is
r =D 0],

To test the validity of this prediction, we measure the
collapse of samples in the creeping regime for a range of
hy. Experiments are performed in cylindrical cells; to
access a wide range of heights, cells are only partially
filled. The time evolution of A(z) is well described by an
exponential decay, consistent with Eq. (6), with a time
constant that depends on initial height, as shown in Fig. 3
(top inset) for ¢ = 5 X 1073, The characteristic time is
well described by 7 ~ h3, except for at the very tallest and
the very shortest cells, where we see some deviations from
the expected behavior. This scaling is in good agreement
with the theoretical predictions. As a further consistency
check, we calculate E from the slope of the dashed lines
shown in Fig. 3, and find E ~ 4 and 25 Pa for ¢ =5 X
1073 and ¢ = 8 X 1073, respectively. As expected, the
compressive moduli increase with ¢ as E ~ ¢, with
v ~ 4; moreover, they are somewhat higher than the mea-
sured shear moduli at comparable ¢, as observed for other
in Fig. 3 collapse when 7 is plotted against 43/ $? as shown
in the bottom inset.

The deviation from the initial exponential collapse rate,
observed for gels at the lowest ¢, must be the manifesta-

colloidal gels [16]. Since 7 ~ 72 and ky, ~ ¢ 2, the curves
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FIG. 3 (color online). Characteristic time scale for collapse as
a function of initial height squared, for ¢ = 5 X 1073 (¥) and
8 X 1073 (#). Top inset: h(f) with baseline subtracted, for ¢ =
5% 1073; hy = 1.8 cm (), 2.1 cm (O), 2.4 cm (A), and 2.7 cm
(V). Bottom inset: characteristic time vs scaled height squared.
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FIG. 4 (color online). Strain vs time after the application of
increasingly large step stresses. The last 2 Pa step stress is
applied for 600 sec, all previous stresses are applied for 100 sec.

tion of network failure, reflecting a crossover into the
nonlinear viscoelastic regime. For the weakest gels, the
gravitational stress is greater than the yield stress; however,
the fluid bears most of the stress at short times, and the
network initially deforms elastically. In this scenario, the
time for network failure may be set by the time required for
the gel to reach its yield strain. However, little is known
about the nonlinear rheology of colloidal gels. To elucidate
this behavior, we study the dynamics of network failure for
a gel at ¢ =2 X 1072 in a stress-controlled rheometer,
using a double-walled Couette geometry. We apply a step
stress for 100 seconds, and then remove it, all while mea-
suring the strain. For small stresses, o = 6 X 1072 Pa, the
gel responds by deforming nearly instantaneously, with
little additional deformation; it also recovers almost com-
pletely, as shown by the open squares in Fig. 4. By contrast,
for o = 1.5 Pa, which is approaching the yield stress, the
behavior is qualitatively different; the strain increases sig-
nificantly, reflecting an increased strain rate as the gel
begins to yield, as shown by the open circles in Fig. 4.
However, the sample still recovers elastically when the
stress is removed. The ultimate yielding of the gel is a
slow process; we apply a stress of 2 Pa 2 times; each time,
the sample partially recovers. In fact, the gel only breaks
and shear thins when the stress is applied for the third time,
as shown by the solid symbols in Fig. 4. This experiment
demonstrates that even when a network is overstressed, it
can take a significant time to yield. This must be reflected
in the collapse behavior of the low-¢ gels, and may also
play a role in the generic delayed collapse of gels [6].
The collapse of colloidal gels results from a balance
between the gravitational load, their resistance to fluid
flow, and their elastic and plastic properties. Given their

elasticity, permeability, and geometry, their stability and
collapse behavior under gravity can be predicted.
Alternatively, by studying their collapse, it is possible to
measure the elasticity of gels which are too weak to be
measured with bulk rheological methods. Likewise, per-
meabilities that are too high to be measured with typical
pressure filtration techniques can also be measured under
gravity. The details of the collapse are captured by the
theory of poroelasticity, which should be applicable for any
elastic network immersed in a viscous background fluid, in
different geometries, and under arbitrary stresses. The
framework provided in this Letter correctly describes the
behavior of the collapsing gels studied here; moreover, we
expect that this framework will describe the delayed sedi-
mentation of all forms of particle networks, independent of
the specific details of their elasticity.
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