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Predator-Prey Cycles from Resonant Amplification of Demographic Stochasticity
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We present the simplest individual level model of predator-prey dynamics and show, via direct
calculation, that it exhibits cycling behavior. The deterministic analogue of our model, recovered when
the number of individuals is infinitely large, is the Volterra system (with density-dependent prey
reproduction) which is well known to fail to predict cycles. This difference in behavior can be traced
to a resonant amplification of demographic fluctuations which disappears only when the number of
individuals is strictly infinite. Our results indicate that additional biological mechanisms, such as predator
satiation, may not be necessary to explain observed predator-prey cycles in real (finite) populations.
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Predator-prey cycles are one of the most striking phe-
nomena observed in population biology, and as such, in-
spire intense discussion among ecologists [1]. Cycles are
also seen in a wide variety of other ‘‘host-natural enemy”’
systems such as host-pathogen [2] systems; one of the most
well known examples is measles, epidemics of which have
been studied for many years [3]. In this Letter, we will be
concerned with modeling the phenomenon of cycles, and
will focus on predator-prey systems, for concreteness, but
our main results will have direct applicability to other host-
natural enemy systems, since they can be modeled in a
similar way, often using identical equations. We also be-
lieve that, since the phenomenon we describe is quite
generic in certain classes of stochastic systems, it should
be found outside population dynamics. It seems that the
precise mechanism underlying the existence of the cycles
has not so far been elucidated because it involves the
analysis of stochastic systems with a large, but finite,
number of constituents, and also because it involves con-
cepts such as resonance, which are more familiar to phys-
icists than biologists.

Among the numerous hypotheses put forward to explain
cycles, perhaps the simplest is that cycles arise directly
from predator-prey interactions. Within this conceptual
framework, theoretical modeling of cycles has traditionally
been developed using deterministic population-level mod-
els (PLMs). Such discussions begin with Volterra-like
equations, which are coupled differential equations for
the predator and prey densities. Equations of this type
encapsulate the simplest processes of predator and prey
mortality, prey reproduction and competition, and preda-
tion. Surprisingly these models do not predict stable
cycles: additional biological mechanisms, such as predator
satiation, need to be included within the framework of
differential equations to give cycles [4]. It seems puzzling
that cycles, which are so easy to understand intuitively, can
only be described mathematically in models which include
these more subtle mechanisms. In order to probe this issue,
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we shall take a different approach here and describe the
predator-prey system using an individual level model
(ILM). The individuals, which are either predators or
prey, are acted upon by simple stochastic processes of
mortality, reproduction, and predation. We are able to
derive an exact description of this model when the number
of individuals is large and finite. We find that the predator
and prey numbers undergo large cycles, just as one would
expect intuitively. The cycles, which arise from a novel
resonance effect, disappear only when the number of indi-
viduals is taken to be strictly infinite, that is, when the PLM
is recovered. From a statistical physics viewpoint, we
would term the PLM a mean field theory of the underlying
“microscopic’ ILM which includes statistical fluctuations.

Predator-prey cycles observed in nature will have a
stochastic component—this will affect both their ampli-
tude and phase. Therefore, care must be taken in averaging
over replicates. A direct average of the population densities
from different replicates will result in a constant average
density since, in the absence of an external “‘forcing,” there
is a lack of synchrony between the cycles from different
replicates. This fact is crucial when modeling predator-
prey cycles. A given PLM is written in terms of a popula-
tion density, which can be thought of as the result of an
average of the population numbers from a large number of
ILM replicates. If a given ILM shows oscillatory behavior,
such cycles will be lost in the modeling transition to a
PLM. Thus, it is necessary to study quantities, such as the
autocorrelation function and power spectrum arising from
an ensemble of ILMs, in order to determine the presence
and properties of predator-prey cycles.

The specific ILM we study in this Letter is a nonspatial
stochastic model. At a given time, a realization of the ILM
consists of #n individuals of species A (the predators) and m
individuals of species B (the prey). Since we are interested
in what is essentially the simplest model of predator-prey
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interactions, we include only birth processes BE—BB,
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death processes A—E, B—E, and predator-prey interac-

tions ABﬂAA, ABBAE. Here (b, dy, dy, p1, py) are rate
constants. The symbol E corresponds to what would be
available sites in a spatial model. In this nonspatial model,
the E’s are (N — n — m) passive constituents of the sys-
tem, which are required for prey reproduction, and which
result in intraspecific prey competition. Note, the overall
number of A, B, and E constituents is fixed to be N. The
dynamics of the model can either be numerically simulated
or studied analytically using the formalism of master equa-
tions [5,6]. Simulations have been performed using two
different algorithms: the first consists of making small
increments in time (in our case 6t = 0.05) and within
each increment choosing constituents at random and im-
plementing the rules given above; the second follows
Gillespie’s exact algorithm [7] in which one of the pro-
cesses is enacted according to its relative statistical weight,
and time is incremented by an amount drawn from the
appropriate exponential distribution. We have found ex-
cellent agreement between the results from both algo-
rithms. Gillespie’s algorithm is superior in that it is exact
and highly efficient. In constructing the master equation,
the transition rates T(n/, m’|n, m) from the state (n, m) to
the state (n’, m') are given by

T(n— 1, mln, m) = d;n,

T(n,m+ 1ln, m) = 2b%(N —n—m),

T(n,m — 1ln, m) = 2p2% + dym,

T+ 1,m — 1|n, m) =2p1%, (1)
where the b and p; have been scaled by a factor of (N — 1)
and the d; by a factor of N. We have already given an
extensive discussion of this approach elsewhere in the
context of competition models [8], and we refer the reader
to this paper for a fuller discussion of the formalism.

The master equation for the probability that the system
consists of n predators and m prey at time t, P(n, m, t), is

PO (6 — 1T~ 1, mbn,m) Pl m, )]

+(& " = DIT(n,m + 1ln, m)P(n,m, 1)]

+ (&, — DIT(n,m — 1ln,m)P(n,m,1)]

+(E'E, = DIT(n + 1,m— 1ln,m)P(n,m,1)],
(2)

where the step operators £ are defined by their actions on
functions of n and m by £ f(n, m, t) = f(n = 1, m, t) and
Ef(nymt) = f(n,m = 1,1).

The mean field limit of this ILM may be obtained by
multiplying (2) by n and m in turn, and subsequently
summing over all allowed values of m and n. This gives
equations for the mean values f; = (n)/N and f, =

(m)/N in the limit N — oo if we ignore terms which are
1/N down on others and make the replacements (m?*) —
(m)? and {mn) — (m)(n). This mean field theory, or PLM,
takes the form

% = n(fz)fl —mfi

! 3)
d
=1 -5) ~stran

The Egs. (3) are frequently referred to as the Volterra
equations, to distinguish them from the Lotka-Volterra
equations which have no term in f,/K [5]. The constants
M, 7, and K are simply functions of the rate constants:

_

=2b— K=1
r b d2, 2b,

M= dl’ (4)

and the linear numerical and functional responses are given

by n(f2) = 2p.f> and g(f,) = 2(p; + py + b)f>.

As is well known [5], the analysis of this model shows a
complete absence of cycles. There is a single fixed point
for which the predators and prey have nonzero population

sizes. Denoting these stationary values by f (I‘Y) and £Y, then

in terms of the original rate constants they are given by:

(2bp, — bd, — p1dy)
2pi(py + py + D)

The stability of this fixed point may be studied by perform-
ing linear stability analysis. This results in a stability
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FIG. 1. Predator and prey densities as a function of time. The
upper panel shows the predator density f; for N = 3200. The
dashed line is calculated from numerical integration of the mean
field Volterra equations (3). The dotted line is the average of the
predator density time series from 10000 replicates generated
from the ILM and is almost indistinguishable from the mean
field solution. The solid line is the predator density time series
for a single typical replicate. The lower panel is the equivalent
plot for the prey density f,. Parameter values are b = 0.1, d; =
0.1, d, = 0.0, p; = 0.25, and p, = 0.05.

218102-2



PRL 94, 218102 (2005)

PHYSICAL REVIEW LETTERS

week ending
3 JUNE 2005

matrix which has entries given by a,; = 0, a;, = 2p,f\,
ay; = —2(p1 + pr + b)Y, and ar, = —2bf5. We have
expressed the entries in terms of the fixed point values,
since these are manifestly positive, and it is easy to see that
the eigenvalues of the matrix both have a negative real part,
implying that the fixed point is stable. While there is no
limit cycle in the Volterra system (3), a limit cycle does
exist in the Lotka-Volterra equations (obtained by taking
K — o0), but it is neutrally stable due to a conserved
quantity in the model. This unrealistic behavior disappears
with the introduction of a finite carrying capacity, K, in (3),
but, as mentioned above, leads to a complete absence of
cycling behavior. Only with the introduction of other
mechanisms, such as predator satiation where the func-
tional response g(f,) has a more complex functional form
which does not grow linearly for all f,, are stable limit
cycles observed [4]. We will show below that cycles can be
found in the ILM, but only when N is finite; the N — oo
limit which was taken in order to derive the PLM, elimi-
nates the cycles present in the original ILM.

We first note that the ensemble averaged population
density of the ILM, determined from numerical simula-
tions, agrees beautifully with the solution of this determi-
nistic model (Fig. 1, dashed and dotted lines, respectively)
showing a decaying oscillatory transient followed by a
constant steady-state density, typical of a Volterra system.
In marked contrast, individual realizations of the ILM
show large persistent cycles (Fig. 1, solid line). The am-
plitude of these oscillations is much larger than the naive
estimate based on the law of large numbers. In fact, the
oscillations are of order (1/+/N) as would be expected, but
amplified by a very large factor due to a noise-induced
resonance effect, as explained below.

This cycling behavior can be investigated analytically by
extracting an “‘effective theory” valid for large N, through
applying a standard method to the master equations, due to
van Kampen [6]. Essentially the method involves the re-
placements n/N = f, + x/</N and m/N = f, + y/~/N
in the transition probabilities that appear in the master
equation. By changing from a description based on the
(discrete) variables n and m to one based on the (continu-
ous) variables x and y, terms of different orders in 1/N can
be identified in the master equation: the leading order
terms give rise to a deterministic set of equations and the
next-to-leading order terms give rise to a linear Fokker-
Planck equation. The leading order set of equations (mean
field theory) are the PLM (3), which we have already
obtained by a more direct method.

At next-to-leading order, rather than write down the
Fokker-Planck equation, it is simpler to give the set of
Langevin equations to which it is equivalent [6]. They take
the form

x=apx+apy+n(t) y=ayx+aypy+mn(). (6)

These are a pair of differential equations which describe

the stochastic behavior of the ILM at large N: x(¢) and y(z)
are stochastic corrections to the deterministic behavior of
the predator and prey densities, respectively, at large but
finite N. The constants, a;;, appearing in Eq. (6), are
exactly the entries of the stability matrix found from a
linear stability analysis about the nontrivial fixed point of
Eg. (3). The noise covariance matrix b;;, which is respon-
sible for generating the large-scale oscillations, cannot be
determined from Eq. (3) and is derived from the master
equation using the van Kampen expansion. Since the noise
is white, b;; = (#;(w)7;(—w)) is independent of the fre-
quency w. The explicit expressions for these constants are
by = 2d1f5s)’ by = by = _d1f(s), and by =
2d,(1 + pz/pl)fgs) + 2d2f§). It is not the average behav-
ior of replicates that interests us, but rather, measures
which characterize the oscillations. Examining x and y as
functions of frequency allows us to determine the nature of
the oscillations.

To search for oscillations in noisy data, one of the most
useful diagnostic tools is the power spectrum P(w) =
{|#(w)|?), where #(w) is the Fourier transform of x(¢).
Taking the Fourier transform of Eq. (6), solving for #(w),
and averaging its squared modulus, we find

a + Bw?
[(w? = Q3)? + TMPw?]

Plw) = (7
where a and B are functions of the ILM rates: o =
by1a3, + 2baplan| + bpal, and B = by,. The con-
stants in the denominator have the especially simple forms
O3 = aplay | and T = |ay,|. The spectrum predicted by
Eq. (7) gives the solid line shown in Fig. 2. The agreement
with the spectrum obtained from simulation of the ILM
(noisy line) is excellent. Note, the naive O(1/+/N) estimate
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FIG. 2 (color online). A plot of the power spectrum P(w) for
the predator time series as a function of frequency w. The
slightly noisy line corresponds to P calculated from 500 replicate
runs of the ILM. The smooth line is the prediction from our
theory, namely, Eq. (7). The parameter values are the same as
those described in the caption to Fig. 1. The inset shows the
analogous power spectra (data and theory) for the prey time
series.
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of the size of stochastic fluctuations corresponds to the zero
frequency value of P(w). Figure 2 clearly illustrates the
very large amplification of these fluctuations due to the
resonance effect.

The spectrum given above is reminiscent of that for a
simple mechanical system—namely a linear damped har-
monic oscillator, with natural frequency (), and driven at
frequency w. In a mechanical oscillator the driving fre-
quency must be tuned to achieve resonance. In the stochas-
tic predator-prey model described here no tuning is
necessary. The system is driven by white noise, as shown
in Eq. (6), which covers all frequencies—thus the resonant
frequency of the system is excited without tuning. We
stress that the noise which drives the system is not external
but arises from the demographic stochasticity contained in
the individual processes which define the model; there is
no environmental stochasticity in our model. Furthermore,
the resonance phenomenon we report here is not related to
““stochastic resonance.”

The damping term, represented by the constant I', limits
the amplitude of the oscillations. Predator-prey systems for
which I" happens to be small will be at risk of extinction
through resonant oscillations, despite having large popula-
tion sizes. The resonant oscillation occurs in the regime

2a,lay;| > a3,, where the resonant frequency w, =

\/Q3 —T%/2 is real. A similar analysis can be carried out

to obtain the spectrum for the prey time series. It again has
the form Eq. (7), but now with a = b“a%I and B = by,.
The positions of the peaks for these two power spectra are
only weakly dependent on the a’s and $’s, and so they are
almost coincident.

Predator-prey systems (and related host-pathogen sys-
tems) have been studied theoretically for decades. Most of
the previous studies have focused on the role of environ-
mental stochasticity, the relevance of nonlinear interac-
tions or of spatial effects, to explain the mechanism of
cycling [5,9]. Some authors have discussed the role that
demographic stochasticity may have on cycles [5,10], and
physicists have investigated the effects of internal noise
[11]. Most of this discussion has been qualitative; the
nearest to our own discussion was a prescient analysis by
Bartlett nearly 50 years ago [10], in which he postulated
equations similar to (6). However, he did not note the
existence of a resonance, and so proposed cycles with an
amplitude which were not enhanced by this effect and
which were therefore of limited biological interest.

The idea that external perturbations with a dominant
frequency can entrain the predator-prey dynamics in a
cyclic nature is fairly intuitive; the phenomenon we discuss

here is more fundamental and less intuitive. The noise in
our system is internal —purely a result of the demographic
stochasticity inherent in discrete birth, death, and predation
events. These excitations are typically of limited interest in
a large population of N individuals, since they give rise to
small O(1/+/N) fluctuations about the mean population
densities. Such is the case, for example, in competition
models [8]. The predator-prey system, and related ones
such as epidemic models, are exceptional in that the equa-
tions describing linear fluctuations about the steady-state
are susceptible to resonant amplification in the vicinity of
an internal frequency (), which is a property of the popu-
lation itself. The internal noise, in exciting all frequencies,
automatically resonates the system giving rise to large
oscillations in the population densities. We expect that
this resonance mechanism will occur in other stochastic
systems in which the mean field theory shows damped
oscillations, for instance, biochemical reactions in micro-
scopic systems [12].
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