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Néel Temperature of Quasi-Low-Dimensional Heisenberg Antiferromagnets
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The Néel temperature TN of quasi-one- and quasi-two-dimensional antiferromagnetic Heisenberg
models on a cubic lattice is calculated by Monte Carlo simulations as a function of interchain (interlayer)
to intrachain (intralayer) coupling J0=J down to J0=J ’ 10�3. We find that TN obeys a modified random-
phase approximationlike relation for small J0=J with an effective universal renormalized coordination
number, independent of the size of the spin. Empirical formulas describing TN for a wide range of J0 and
useful for the analysis of experimental measurements are presented.
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While genuinely one-dimensional (1D) and two-
dimensional (2D) antiferromagnetic Heisenberg (AFH)
models cannot display long-range order (LRO) except at
zero temperature [1], weak interchain or interlayer cou-
plings, J0, which always exist in real materials, lead to a
finite Néel temperature TN. So far, the J0 dependence of TN

was calculated by exactly treating effects of the strong
interaction J in the 1D or 2D system, but using mean-field
approximations for the interchain and interlayer coupling
J0 [2]. Recently, more advanced theories of the latter
effects have been proposed for quasi-1D (Q1D) [3,4] and
quasi-2D (Q2D) [5] systems, and the results have been
compared with the experimental observations on Q1D
antiferromagnets, e.g., Sr2CuO3 [6], and Q2D antiferro-
magnets, e.g., La2CuO4 [7]. In view of the importance of
experimentally well-studied Q2D antiferromagnets as un-
doped parent compounds of the high-temperature super-
conductors, accurate and unbiased numerical results for
Q1D and Q2D AFH models are strongly desired. In a
recent work along this line, Sengupta et al. [8] have dem-
onstrated peculiar temperature dependences of the specific
heat in the quantum Q2D AFH model.

Here we calculate the Néel temperature TN as a function
of J0 in fully three-dimensional (3D) classical and quantum
Monte Carlo (MC) simulations of coupled chains and
coupled layers. Our MC results on the quantum spin-S
and classical S � 1 AFH models are analyzed by a modi-
fied random-phase approximation (RPA) with a renormal-
ized coordination number defined by

��J0� �
1

J0�s�TN�J0��
; (1)

where �s�T� is the staggered susceptibility of the 1D or 2D
model at temperature T.
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In a simple RPA calculation [2], this quantity is just the
coordination number zd in the interchain or interlayer
directions: z1 � 4 and z2 � 2 for the Q1D and Q2D sys-
tems, respectively. Our main result is that ��J0� evaluated
by Eq. (1) with our numerically obtained TN�J

0� and �s�T�
becomes constant

��J0� 	 �d � kdzd (2)

for J0 < J0c ’ 0:1J with k1 � 0:695 and k2 � 0:65. These
constants kd differ from the simple RPA result kd � 1, but
the value of k1 is consistent with the modified self-
consistent RPA theory for the quantum Q1D (QQ1D)
model of Irkhin and Katanin (IK) [3]. Furthermore, we
find that, within our numerical accuracy, the value of kd is
the same for S � 1=2; 1; 3=2, and 1, and we conjecture
that kd is universal and independent of S for small J0=J.

We also propose empirical formulas for TN�J0� for all
values of J0 examined in the present work up to J0 � J
where corrections to the modified RPA are significant
quantitatively. These formulas are useful in analyzing
experimental results on infinite-layer antiferromag-
nets such as Ca0:85Sr0:15CuO2 [9], �5CAP�2CuBr4, and
�5MAP�2CuBr4 [10], where they allow one to determine
the strength of the interchain or interlayer coupling J0 from
experimental measurements of TN.

Model and numerical methods.—The Hamiltonian of
the Q1D and Q2D AFH models is defined on an anisotropic
simple cubic lattice:

H �
X
i;j;k

�JxSi;j;k 
 Si�1;j;k � JySi;j;k 
 Si;j�1;k

� JzSi;j;k 
 Si;j;k�1�; (3)

where the summation �i;j;k runs over all the lattice sites on
an Lx � Ly � Lz cubic lattice and Si;j;k is the spin operator
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at site (i; j; k). We put Jx � Jy � J0 and Jz � J for the
Q1D model and Jx � Jy � J and Jz � J0 for the Q2D
model with J > 0 and 0 
 J0 
 J. For comparison, we
also examine the classical limit S � 1 of Eq. (3). Note
that JS�S� 1� sets the energy scale in the classical model.
In practice, we simulate a system of unit vectors, which is
equivalent to fixing JS�S� 1� to unity.

The MC simulations have been performed using the
continuous-imaginary-time loop algorithm [11] for the
quantum model (QMC) and the Wolff cluster algorithm
[12] for the classical model (CMC). The AF correlation
length �� in each of the directions � (�x; y; z) are evalu-
ated by the second-moment method [13] on lattices whose
aspect ratio is chosen such that ��=L� does not depend on
� in the vicinity of TN. Explicitly, for the S � 1=2 QQ1D
systems with J0=J � 0:01, 0.05, 0.1, and 0.5, we set
Lz=Lx � 36 (Lz 
 504), 12 (384), 4 (200), and 2 (128),
respectively, while for the S � 1=2 quantum Q2D
(QQ2D) systems with J0=J � 0:001, 0.005, 0.01, and
�0:02, we set Lx=Lz � 48 (Lx 
 288), 20 (240), 16
(192), and 1 (80), respectively. Then we determine TN

from finite-size scaling, looking for the best data collapse
of ��=L� plotted versus �T � TN�L

1=� for different system
sizes. We have fixed the exponent � � 0:71 [14] to the
value of the 3D classical Heisenberg universality class. The
values of TN obtained for the S � 1=2 QQ1D and classical
Q1D (CQ1D) systems, and the S � 1=2 QQ2D and clas-
sical Q2D (CQ2D) systems are listed in Table I.

Q1D systems.—The classical 1D model shows LRO at
T � 0, while the ground state of the S � 1=2 and 3=2
quantum 1D model is gapless and has no LRO [15].
Correspondingly, the staggered susceptibility �s for the
classical model, given exactly by [16]

�s�T� �
x
3J

1� 1= tanhx� 1=x
1� 1= tanhx� 1=x

(4)

with x � JS�S� 1�=T, diverges as T�2 in the limit T ! 0,
while the one for the S � 1=2 model, asymptotically given
by [17]
TABLE I. Néel temperatures of the S � 1=2 QQ1D, CQ1D,
S � 1=2 QQ2D, and CQ2D AFH models, normalized by JS�S�
1�. The result for the classical system with J0=J � 1 is taken
from Ref. [14].

TN=JS�S� 1�
J0=J QQ1D CQ1D QQ2D CQ2D

1 1.2589(1) 1.4429(1) 1.2589(1) 1.4429(1)
0.5 0.78997(8) 0.9317(1) 1.0050(4) 1.1733(1)
0.1 0.22555(3) 0.39551(8) 0.6553(4) 0.8526(1)
0.05 0.12171(5) 0.28377(4) 0.5689(2) 0.7797(1)
0.02 0.05258(1) 0.18361(3) 0.48463(8) 0.7115(1)
0.01 0.02768(1) 0.13157(2) 0.43515(6) 0.6731(2)
0.005 0.09393(2) 0.39513(4) 0.6419(2)
0.001 0.042547(6) 0.32571(8) 0.5858(4)
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�s�T� ’
c1
T

����������������������������������������������
ln
�
�J
T

�
�

1

2
lnln

�
�J
T

�s
; (5)

exhibits only a 1=T divergence with logarithmic correc-
tions. Here we note that the quantitative accuracy of this
expression is limited to a very low temperature range. In
fact, Eq. (5) with the constants c1 and � derived field
theoretically [17] does not fit well to �s calculated numeri-
cally at T � 0:003J. This indicates the limits of applica-
bility of analytical results and the fact that one has to use
instead numerical data in this temperature range.

Because of the different functional forms of the quantum
and classical susceptibilities, we observe in Fig. 1 that, at
small J0=J, TN�J0� /

����������
J0=J

p
for the classical model, while

TN�J0� / J0=J with logarithmic corrections for the quan-
tum model. Comparing the RPA result [Eq. (2) with
k1 � 1] with the modified RPA one [Eq. (2) with k1 ’
0:70, denoted by IK], one can easily see that the latter
describes TN�J

0� much better and is a fairly good descrip-
tion of TN�J0� in the range J0=J & 0:3. Comparing our
results to the next leading order finite-temperature pertur-
bation theory [4] (NLO in Fig. 1) which is based on Eq. (5),
however, we do not find good agreement, because, as
pointed out above, Eq. (5) is inappropriate in the consid-
ered temperature range.

The agreement with the modified RPA theory is directly
shown in Fig. 2 where the J0 dependence of ��J0� in Eq. (1)
is shown. The �s�TN�J0�� are obtained from QMC simula-
tions interpolated near T � TN for the S � 1=2 model and
from Eq. (4) for the S � 1 model. For J0=J 
 0:1 we
reach Eq. (2) with k1 ’ 0:695 for the S � 1=2 model as
well as for the classical limit S � 1 model and conclude
that, within the numerical accuracy of our simulation, the
modified RPA with J0-independent ��J0� is an appropriate
quantitative description of the models with J0=J in this
range.
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FIG. 1. J0 dependence of TN=JS�S� 1� for the Q1D systems.
The error bar of each point is much smaller than the symbol size.
The dashed curve passing through the S � 1 data is obtained by
Eq. (2) with k1 � 0:7 and Eq. (4) for �s. The solid curve denotes
the proposed empirical formula (8). The others are results of
various approximations discussed in the text.
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FIG. 3. J0 dependence of TN=JS�S� 1� for the Q2D systems.
The open symbols denote our numerical results for the S � 1=2
(circles), S � 1 (squares), and S � 1 (triangles) models. The
error bar of each point is much smaller than the symbol size. The
dashed (RPA) and dotted (modified RPA) curves for S � 1=2 are
obtained from Eqs. (1) and (2) with k2 � 1 and 0:65, respec-
tively. The solid curves denote the proposed empirical formula
(9), while the curve passing through the S � 1 data is simply a
guide for the eye. The inset shows the same data on a linear
scale.
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FIG. 4. J0 dependence of ��J0�=z2 for the Q2D systems. In all
cases ��J0�=z2 approaches a constant ( ’ 0:65), denoted by the
dotted line, at small J0=J. The error bar of each point is smaller
than the symbol size unless given explicitly.
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FIG. 2. J0 dependence of ��J0�=z1 for the Q1D systems. In all
cases ��J0�=z1 approaches a constant ( ’ 0:695), denoted by the
dotted line, at small J0=J. The error bar of each point is smaller
than the symbol size.
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Interestingly, the result mentioned above seems to hold
for quantum models with other values of S. As also shown
in Fig. 2, within our numerical accuracy, this is well
confirmed for the S � 3=2 model with J0=J � 0:02. For
the S � 1 case we find agreement in the range J0=J �
0:05, where TN is larger than the Haldane gap [18] of the
isolated chain. Below this temperature the finite-size scal-
ing of the QMC data becomes less reliable and we cannot
draw definitive conclusions. Even if the result for the S � 1
model is restricted to this temperature range, the present
result is surprising, given the different behavior of �s�T� in
the classical and quantum 1D models.

Q2D systems.—In both classical and quantum 2D mod-
els, AF-LRO appears at T � 0, together with an exponen-
tial divergence of �s�T� at T ! 0. In the classical 2D
system, �s is proportional to T3 exp�4�J=T� at low tem-
peratures [19,20]. For the quantum 2D models, there is a
similar exponential divergence at T ! 0. In the renormal-
ized classical regime of the nonlinear � model [21], for
example, �s�T� is written as

�s�T�J � c2T=J exp�4��s=T�; (6)

where �s is the spin stiffness and c2 a constant.
The J0 dependence of TN for the Q2D models is shown in

Fig. 3. We see that TN�J
0� / �1= ln�J0=J� at small J0=J in

the S � 1=2, 1, and 1 models due to the similar exponen-
tial forms of �s at T ! 0 of the classical and quantum
models. Figure 4 shows that again for J0=J & 0:05 the
values of ��J0� are universal for the quantum and the
classical models: k2 � 0:65 in Eq. (2) independent of the
spin size S. This confirms the validity of our modified RPA
scenario represented by Eqs. (1) and (2) also for the Q2D
systems.

If we insert Eq. (6) into Eq. (1) with ��J0� � �2, we
obtain the following expression of TN for J0=J � 1:

TN � 4��s=�b� ln�J0=J� � ln�TN=J��; (7)

with b � � ln��2c2�. This result is compatible with that of
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the 1=N-expansion theory by Irkhin et al. [5] for the S �
1=2 model in the same limit. Various estimations of b and
�s can be obtained analytically [5] according to the differ-
ent approximation schemes used. Unfortunately, we cannot
judge which approximation is most relevant in general
since higher order corrections to the asymptotic expression
(6) are known to be necessary to reproduce the numerically
obtained �s for T=4��s * 0:1 [22]. In fact, corrections of
this type and uncertainty on TN due to the different pos-
sible estimates of b are comparable. We expect, on the
other hand, that the constancy of the normalization factor
k2, which is found numerically to be within 2% in 0:001 &

J0=J & 0:05 and 0:32 & TN=JS�S� 1� & 0:57 (Fig. 4),
holds in the limit J0=J ! 0 as well.

Empirical formulas.—Finally, we propose empirical
formulas for TN�J

0� based on our QMC results. For the
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TABLE II. Interlayer coupling J0 estimated by Eq. (9) for
various infinite-layer compounds. The Néel temperatures TN,
the intralayer couplings J, and their ratio estimated by the
experiments are also listed.

Compound TN J TN=J J0=J

Ca0:85Sr0:15CuO2 [9] 537 K 1535 K 0.35 0.016
�5CAP�2CuBr4 [10] 5.08 K 8.5 K 0.60 0.24
�5MAP�2CuBr4 [10] 3.8 K 6.5 K 0.58 0.22
�5CAP�2CuCl4 [10] 0.74 K 1.14 K 0.64 0.33
�5MAP�2CuCl4 [10] 0.44 K 0.76 K 0.57 0.21
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S � 1=2 QQ1D system we propose a modified RPA form
based on Eqs. (2) and (5) with a constant ��J0�,

J0 � TN

��
4c

���������������������������������������������
ln
�
�J
TN

�
�

1

2
lnln

�
�J
TN

�s 	
; (8)

but with modified values of the constants with c � 0:233
and � � 2:6. These values are chosen to reproduce not
�s�T� but TN�J0�. This formula describes TN�J0� very well
in the whole range of J0=J as shown in Fig. 1, and it can be
used to analyze experimental results, e.g., to obtain J0=J ’
0:0007 for Sr2CuO3 from TN=J ’ 0:002 [6].

For the QQ2D systems, we find that instead of Eq. (7),
the following simpler expression describes TN better in the
range 0:001 
 J0=J 
 1 (see Fig. 3):

TN � 4��s=�b� ln�J0=J��; (9)

with �s=J � 0:183 and b � 2:43 for S � 1=2, and �s=J �
0:68 and b � 3:12 for S � 1. Table II shows interlayer
couplings J0 estimated using this equation for a number of
infinite-layer materials with S � 1=2.

To conclude, we have determined, by high-precision MC
simulations, the Néel temperatures of quantum and classi-
cal Q1D and Q2D Heisenberg antiferromagnets. Besides
finding empirical formulas for TN�J0�, we observe that,
using numerically accurate values of �s, a modified RPA
with the J0-independent renormalized coordination number
�d succeeds in quantitatively describing the relation be-
tween TN and J0=J for J0 < J0c with J0c ’ 0:1J.

An intriguing result of our simulations is the indepen-
dence of �d on the value of the spin S, suggesting a
universality of corrections to RPA for J0 � J. Since in
this temperature regime the physics of all these models
should be well described by an anisotropic nonlinear �
model (NL�M) in the renormalized classical regime, we
conjecture universal corrections to RPA also for the
NL�M.
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