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Shot Noise in the Chaotic-to-Regular Crossover Regime
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We investigate the shot noise for phase-coherent quantum transport in the chaotic-to-regular crossover
regime. Employing the modular recursive Green’s function method for both ballistic and disordered two-
dimensional cavities, we find the Fano factor and the transmission eigenvalue distribution for regular
systems to be surprisingly similar to those for chaotic systems. We argue that, in the case of regular
dynamics in the cavity, diffraction at the lead openings is the dominant source of shot noise. We also
explore the onset of the crossover from quantum-to-classical transport and develop a quasiclassical
transport model for shot noise suppression which agrees with the numerical quantum data.
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The significance of noise induced by the discreteness of
the electron charge (‘‘shot noise’’) first investigated almost
a century ago [1] has resurfaced in the field of mesoscopic
physics [2,3]. Shot noise carries information about the
crossover from a deterministic (classical) particle picture
of electron motion to a probabilistic (quantum) description,
where electrons behave as matter waves. The uncertainty
inherent in a quantum picture gives rise to noisy transport.
In conductance through quantum dots the correlations
between electrons in the Fermi sea lead to a suppression
of shot noise S relative to the Poissonian value of uncorre-
lated electrons SP [4]. The reduction relative to the com-
pletely random limit is customarily expressed in terms of
the Fano factor F � S=SP.

Most investigations to date have focused on quantum
dots whose classical dynamics is fully chaotic [4–11]. In
this limit, random matrix theory (RMT) [8] predicts a
universal value for the Fano factor, F � 1=4. The applica-
bility of this RMT result requires, in addition to the under-
lying chaotic dynamics, dwell times in the open cavity �D
which are sufficiently long compared to the Ehrenfest time
�E. The latter estimates the time for the initially localized
quantum wave packets to spread all over the width d of the
cavity (typically d �

����
A

p
with A the area of the dot) due to

the divergence of classical chaotic trajectories. It can be
estimated as [12]

�E � ��1 ln�d=	F�; (1)

where � is the Lyapunov exponent (�> 0 for a chaotic
cavity), and 	F is the de Broglie wavelength associated
with the wave number at the Fermi surface kF. The limit
�E=�D � 1 corresponds to the quantum (or RMT) regime
and �E=�D � 1 corresponds to the classical limit for
which F � 0 is expected. For ballistic cavities in the cross-
over between these two regimes, a simple conjecture for F
was put forward [7],

F � 1=4 exp���E=�D�: (2)

For cavities with a short-ranged disorder potential, an
alternative crossover behavior,
05=94(21)=216801(4)$23.00 21680
F � 1=4�1	 �Q=�D�
�1; (3)

was proposed [13,14] (see also [11]), where �Q is a char-
acteristic scattering time within which the wave packet is
scattered into random direction. The quantities �Q and �E
are closely related to another as both denote the character-
istic time scale for spreading of the wave packet by chaotic
scattering at either the boundary (�E) or the interior (�Q) of
the cavity. Moreover, for short-ranged disorder with a
correlation length lC < 	F, �Q incorporates, just as �E,
quantum effects and depends on an effective �heff of the
system. The crossover from the chaotic to the regular
regime is therefore predicted to be controlled by a single
ratio �E=�D or �Q=�D which will be a function of the size
of quantum effects ( �heff) and the mean rate of irregular
(chaotic) scattering, h�i. The chaotic-to-regular crossover
corresponds to the limit h�i ! 0, while the quantum-to-
classical limit involves �heff ! 0.

An obvious test of different predictions would be to
simulate phase-coherent scattering processes on a com-
puter. However, conventional numerical techniques suffer
from a slow convergence rate for large �E and, in particu-
lar, for small �heff . To circumvent this difficulty, an ‘‘open’’
dynamical kicked rotator model was recently successfully
used to mimic chaotic scattering in a 1D system [6,10].
Experimental tests have, so far, been limited to the regime
of �Q=�D < 1 [14].

One open question not yet well understood is the behav-
ior of shot noise for motion in a regular rather than a
chaotic cavity, i.e., in the limit � ! 0. For a mixed system
lower values of F have been observed [15], suggesting that
for regular systems F may vanish. Taken at face value,
Eq. (2) yields F � 0 for the case of �E ! 1 or � ! 0 at a
fixed value of �heff . This result would correspond to a
complete suppression of shot noise. On the other hand,
the notion of noisy transport as a result of the wave nature
of electrons would suggest that noise should be inherent in
phase-coherent transport through mesoscopic structures
irrespective of the chaoticity of the underlying classical
dynamics. In this Letter we analyze a model for transport
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through a cavity that allows us to investigate the crossover
regime from chaotic-to-regular dynamics, i.e., � ! 0, and
the onset of the crossover from quantum-to-classical dy-
namics. In our model, the dwell time and the mean rate of
chaotic spreading of the wave packet, h�i, can be tuned
independently. Surprisingly, we find that the Fano factor
and the distribution of transmission eigenvalues for regular
systems resemble closely that of chaotic systems. We
interpret this observation in terms of the ubiquity and
dominance of diffractive scattering in phase-coherent
cavities.

We choose first a scattering geometry (Fig. 1) which
consists of a rectangular cavity to which two leads of width
d are attached via tunable shutters with an opening width
w. To reduce direct transport between the shutter openings,
they are placed on the bottom and top ends of the leads,
respectively. The cavity region of width d and length 2d
contains a disorder potential V characterized by its mean
value hVi � 0, and the correlation function hV�x�V�x	
a�i � hV2i exp��a=lC� [16]. The correlation length lC is
typically a small fraction of the Fermi wavelength lC=	F �

0:12 and the potential strength V0 �
���������
hV2i

p
is weak,

V0=EF � 0:1. The dependence of �D on the shutter open-
ing was determined to be approximately independent of V0

by a Monte Carlo sampling of �105 classical trajectories,
�D � 2:66=�wkF�. In the limit of vanishing disorder �V0 !
0� the motion inside the cavity becomes completely
regular.

Our quantum calculation proceeds within the framework
of the modular recursive Green’s function method
(MRGM) [17] which allows to treat two-dimensional
quantum dots with relatively small 	F (or small �heff).
The MRGM requires, however, separable modules. We
construct the latter by decomposing the cavity region into
two square modules for each of which we choose a sepa-
rable random potential V�x; y� � V1�x� 	 V2�y�. In order
to destroy the unwanted separability and to ensure chaotic
dynamics, we build up the cavity by combining two iden-
tical modules, however, rotated by 180� relative to each
other (see Fig. 1 for an illustration). As the Fermi wave
number and the width of the leads d is independent of the
shutter openings w, this device allows us to study two
FIG. 1. Rectangular quantum billiard with tunable shutters and
tunable disorder potential (gray shaded area). Electrons are
injected from the left into the cavity region of size A � 2d2,
width 2d, and height d. Tuning the opening of the shutters w and
the strength of the disorder potential V0, the onset of the cross-
over from quantum-to-classical and chaotic-to-regular scattering
can be investigated, respectively.
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different crossovers of shot noise: (1) By changing the
opening of the shutters w the dwell time in the cavity �D
can be tuned without changing the Fermi energy EF. With
the increase of w the onset of the quantum-to-classical
crossover can be probed, with the side effect, however,
that not only �heff is reduced but simultaneously the classi-
cal phase space structure is altered. This closely resembles
the parameter tuning in the experiment [14]. (2) By tuning
the strength of the disorder potential, the rate of chaotic
spreading, h�i, and thus �E (or �Q, used in the following
interchangeably) is varied.

We evaluate the transmission amplitudes tmn for an
electron injected from the left by projecting the Green’s
function at the Fermi energy G�EF� onto all modes m; n 2
�1; . . . ; N� in the ingoing and outgoing leads, respectively.
The Fano factor F is then calculated from the
N-dimensional transmission matrices t [3],

F �
hTr tyt�1� tyt�i

hTr tyti
�

h
PN
n�1 Tn�1� Tn�i
h
PN
n�1 Tni

; (4)

with Tn being the eigenvalues of tyt. The brackets h� � �i
transmission eigenvalues T
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FIG. 2 (color online). (a) Fano factor F for the cavity depicted
in Fig. 1 as a function of the shutter opening ratio w=d. Curves
for different disorder amplitudes: V0=EF � 0:1 (�), 0.07 (�),
0.05 (�), 0.03 (�), 0.015 (�), 0 (4). (b) Fano factor as a
function of the disorder amplitude V0. Curves for different
shutter openings: w=d � 0:1 (�), 0.2 (�), 0.3 (�), 0.4 (�),
0.5 (�), 0.55 (4). Insets of (a) and (b) depict the fit parameter-
free prediction with diffractive corrections [Eq. (5)].
(c) Distribution of transmission eigenvalues ��T� for different
values of w: w=d � 15 (�), 50 (5), and V0=EF � 0 (�), 0 (5).
(d) ��T� for different values of V0: V0=EF � 0:1 (�), 0 (�) and
w=d � 50 (�), 50 (�).
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FIG. 3 (color online). (a) Fano factor F for scattering systems
with chaotic (stadium) and regular (circle, rectangle) classical
dynamics as a function of kF, in units of the number of open
modes N � int�kFb= � (each data point is averaged over 200
equidistant kF values). The inset shows the fit parameter-free
prediction with diffractive corrections [see Eq. (5)]. (b)–
(d) Distribution of transmission eigenvalues ��T� averaged
over the kF range depicted in (a). Remarkably the obtained
values for ��T� correspond very closely to the RMT prediction
�RMT�T�, irrespective of the chaoticity in the cavity. The insets
show the cavity geometries.
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indicate that we average over 150 equidistant points in the
wave number range kF 2 �40:1; 40:85� �  =d, where 40
transverse lead modes are open. Note that this mode num-
ber is higher than in previous studies. We choose a nearest-
neighbor spacing �x � �y in the Cartesian discretization
grid such that the Fermi wavelength is well resolved by a
large number of grid points, 	F � 32�x. With these set-
tings we have a total number of �8:5� 105 grid points in
the interior of the cavity. Figure 2 displays the Fano factor
as a function of the inverse dwell time ��1

D [Fig. 2(a)] and
the inverse Ehrenfest time ��1

E [Fig. 2(b)]. For ��1
D ! 0

(i.e., large dwell times) F approaches the universal value
1=4 irrespective of the strength of the disorder potential V0,
while for shorter dwell times F falls off gradually
[Fig. 2(a)]. The steepness of this decrease is clearly depen-
dent on V0 and thus on the mean scattering rate h�i. Most
striking is the feature that for V0 ! 0 but long dwell times
the shot noise reaches the RMT value even though the
dynamics is now entirely regular [see Fig. 2(a)]. In
Fig. 2(b) this feature is reflected by the fact that the Fano
factor F does not decay to zero even as V0 ! 0 (i.e., ��1

E !
0). There is no compelling a priori reason why the RMT
prediction should be applicable to regular systems. This
observation suggests that the conjectures [Eqs. (2) or (3)]
require a modification to properly account for the shot
noise in the regular limit. We argue that the key point is
the wave packet diffraction at the cavity openings which
has to be incorporated in the theoretical description of shot
noise. Note that this feature is inherent in quantum trans-
port and independent of the underlying regular or chaotic
dynamics [17]. Scattering due to chaotic dynamics, which
lies at the core of RMT, certainly leads to wave packet
spreading but does not constitute the only or, in general,
dominant source.

Diffraction at the cavity openings has been studied in
detail [18,19] and can be described by a standard
Fraunhofer diffraction analysis for electrons that enter or
leave the cavity [18]. An estimate for wave packet spread-
ing can be found by considering the characteristic angular
injection patterns of the transverse modes in these open-
ings. Averaging the individual patterns over the total num-
ber of modes in the shutter openings,M � int�kFw= �, we
obtain for the variance of the injection angle " the depen-

dence: h
�����������������������
h"2i � h"i2

p
i � 0:5�M�0:5. This result now en-

ters our considerations on a modified estimate for �E (or
�Q). We perform a quasiclassical Monte Carlo transport
simulation [20] in which we follow an ensemble of classi-
cal trajectories subject to a random Poissonian scattering
process. For the latter we calculate the transport mean free
path (�SvF) and the differential scattering probability
[P�"� � d$=d"] in first Born approximation, thus taking
into account quantum diffractive scattering (for lCkF < 1)
along the lines of Refs. [13,14]. In this simulation, spread-
ing results from both the injection of classical trajectories
with an initial angular distribution given by Fraunhofer
diffraction at the shutter opening and multiple scattering
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inside the cavity. This allows one to identify a modified
Ehrenfest time ~�E as the time it takes for the ensemble of
trajectories to acquire a mean spread of the order of the
cavity width d under the influence of disorder (or chaotic)
scattering inside the cavity as well as diffraction at the
shutter openings. At ~�E the mean separation reaches
�r�~�E� � h�~r� h~ri�2i1=2 � d. Already the inclusion of
Fraunhofer scattering alone leads to a drastic reduction of
the Ehrenfest time: Injected electrons spread much faster
over the whole cavity than according to the estimate in
Eq. (1). An important consequence of this modification is
that the parameter ~�E is now of comparable magnitude or
even smaller than the time �0 beyond which universal
behavior for P�t� sets in [P�t� / exp��t=�D� for chaotic
and P�t� / �t=�D�

�' for regular dots]. In this regime
system-specific deviations of the dwell time distribution
from a universal decay law are more pronounced than
characteristic mean differences between regular and cha-
otic cavities [17–19]. For our estimate of the Fano factor F
[see insets of Figs. 2(a) and 2(b)] we therefore take into
account the exact dwell time distribution P�t�, resulting
from the quasiclassical Monte Carlo trajectory simulation
for the particular system we study. Following the analysis
[9] based on the contribution of noiseless transmission
channels, we find
1-3
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F � 1=4
�
1�

Z ~�E

0
P�t�dt

�
� 1=4

Z 1

~�E
P�t�dt: (5)

Note that Eq. (5) is applicable to chaotic as well as regular
systems and is valid irrespective of whether the origin of
spreading is ballistic scattering at the boundary or diffrac-
tive scattering inside the cavity.

It is now tempting to probe the convergence towards the
RMT limit for ~�E=�D < 1 also for the distribution of trans-
mission eigenvalues ��T� and for other regular and chaotic
structures that feature only ballistic motion. We therefore
investigate transport across the semicircular, rectangular,
and semistadium-shaped cavities, which are prototypical
for regular and chaotic ballistic motion, respectively [see
insets of Figs. 3(b)–3(d)]. Unlike in the case of the ge-
ometry of Fig. 1, where the number of open modes was
fixed, transport coefficients were calculated here for a wide
range of kF. The dynamics of these cavities is classically
scaling invariant. An increase of kF thus probes directly the
dependence of ~�E=�D on �heff , while keeping the classical
phase space and � fixed. Unlike the �D ! 0 crossover
performed with the help of the tunable shutters as in the
experiment [14] and in the simulation above, the kF ! 1
limit would correspond to the ‘‘pure’’ quantum-to-classical
crossover as �heff ! 0.

Employing the same high density of grid points we reach
up to 15 flux-carrying modes in the semicircular and
rectangular billiard and 7 open lead modes in the case of
the semistadium [17]. We therefore can observe only the
onset of the quantum-to-classical crossover for these three
cavities. Their area A � �4	  �=2 and lead width b �
0:125 are identical. Given this small lead width, i.e.,
b=

����
A

p
� 0:066, our results agree very well with those

shown in Fig. 2 for small shutter openings: at all energies
the Fano factor is close to 1=4, irrespective of the chaot-
icity in the cavity. However, for a higher number of open
modes (i.e., higher kF) diffraction becomes less important
since ~�E becomes larger and a decrease in the Fano factor
ensues, signifying the onset of the quantum-to-classical
crossover. Our numerical data [Fig. 3(a)] agree, indeed,
with this prediction. Moreover, the quantitative behavior is
well described by Eq. (5) [see inset of Fig. 3(a)].

The RMT prediction for the distribution of trans-
mission eigenvalues Tn is given by [8] �RMT�T� �
1=� 

�������������������
T�1� T�

p
�. Taking our original scattering geometry

(Fig. 1) with a setting of wide shutter openings (short �D or
‘‘classical’’) and no disorder potential (‘‘regular’’) we find
a curve which clearly deviates from this RMT prediction
[see Figs. 2(c) and 2(d)]. Remarkably, the RMT limit is,
however, restored equally well by either (1) further closing
the shutters (longer �D or ‘‘quantum’’) or (2) by increasing
the disorder potential (increase of h�i or ‘‘chaotic’’). In
line with this observation the stadium-shaped, circular, and
rectangular cavity all fulfill the �RMT�T� remarkably well
[see Figs. 3(b)–3(d)] due to their small lead openings (i.e.,
long dwell times). This suggests that for ~�E=�D � 1 not
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just F but also the distribution function ��T� approaches
the ‘‘universal’’ RMT limit.

To summarize, we have numerically verified the behav-
ior of the Fano factor F in a realistic scattering system with
a tunable disorder potential and tunable shutters. We find
that diffractive quantum scattering is sufficient to establish
the RMT eigenvalue distribution �RMT�T�, irrespective of
regular or chaotic dynamics. The chaotic-to-regular and
quantum-to-classical crossover in F can be estimated by a
generalization of a previously proposed dependence [9] on
the Ehrenfest time ~�E [Eq. (5)], provided that the definition
of the Ehrenfest time is properly modified to include
diffraction.
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