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Chiral SU(3) effective field theory in combination with a relativistic coupled-channels approach is used
to perform a novel analysis of the strong-interaction shift and width in kaonic hydrogen in view of the new
accurate DEAR measurements. Questions of consistency with previous K~ p data are examined. Coulomb
and isospin breaking effects turn out to be important and are both taken into account in this work.
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The low-energy KN system is of special interest as a
testing ground for chiral SU(3) symmetry in QCD and,
in particular, for the role of explicit symmetry breaking
induced by the relatively large mass of the strange quark.
Most significantly, the existence of the A(1405) reso-
nance just 25 MeV below the K~ p threshold makes chiral
perturbation theory inapplicable in this channel. Non-
perturbative coupled-channels techniques based on driving
terms of the chiral SU(3) effective Lagrangian have proved
useful and successful in dealing with this problem by
generating the A(1405) dynamically as an I = 0 KN qua-
sibound state and as a resonance in the 77, channel. High-
precision K~ p threshold data set important constraints for
such theoretical approaches. Now that new accurate results
for the strong-interaction shift and width of kaonic hydro-
gen from the DEAR experiment [1] are available, there is
renewed interest in an improved analysis of these data
together with existing information on K~ p scattering, the
772, mass spectrum, and K~ p threshold decay ratios.

The combination of chiral SU(3) effective field theory
with coupled channels was first introduced in Ref. [2] and
subsequently further developed and applied to a variety of
meson-baryon scattering and photoproduction processes
[3-8]. The starting point of this coupled-channels ap-
proach is the chiral effective Lagrangian which incorpo-
rates the same symmetries and symmetry breaking patterns
as QCD and describes the coupling of the pseudoscalar
meson octet (7, K, ) to the ground state baryon octet
(N, A2 E):

The purely mesonic part of the Lagrangian £ up to
second chiral order is given by L, [9], while the second
part L,p describes the meson-baryon interactions and
reads at lowest order [10]
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with (...) denoting the trace in flavor space. The pseudo-

scalar meson octet ¢ is summarized in u, = iuto wU ut
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where U = u? = exp(v/2i¢/f), and f is the pseudoscalar
decay constant in the chiral limit. The ground state baryon
octet is collected in the 3 X 3 matrix B, M|, is the common
baryon octet mass in the chiral limit, and D, F are the axial
vector couplings of the baryons to the mesons. The values
of D and F are extracted from the empirical semileptonic
hyperon decays. A fit to data gives D = 0.80 = 0.01, F =
0.46 = 0.01 [11]. Finally, the covariant derivative of the
baryon fields is

[D,, B]=d,B +[T,, B] 3)

with the chiral connection
1
r,= 5[u*, 3, ul 4)

At next-to-leading order the terms relevant for s-wave
meson-baryon scattering are

L8, = by(B{x+. BY) + bp(Blx+. B + bo(BB)x+)
+ dy(B{u,, [u", BI}) + dy(Blu,, [u®, B]))
+ dy(Bu,, Xu*B) + d,(BB)Yu*u,,). (5)

Explicit chiral symmetry breaking is induced via the quark
mass matrix M = diag (m,, my, m,) which enters in the
combination y. = 2By(ut Mut + uMu), with B, =
—(0|gq|0)/ f? representing the order parameter of sponta-
neously broken chiral symmetry.

In the present work the numerical values for the cou-
plings b; and d; have been constrained as in the recent
coupled-channels analysis of Ref. [7] which includes 7
photoproduction on nucleons as a high quality data set. We
shall allow for small variations around the central values
obtained in that work for the following reason: in the
approach of [7] only the contact interactions and the direct
Born term for meson-baryon scattering were taken into
account whereas, in addition, the crossed Born term is
included in the present analysis. We can therefore expect
small changes in the numerical determination of the cou-
pling constants from a fit to low-energy hadronic data.

In the current investigation we employ a relativistic
chiral unitary approach to the strong KN interaction based
on coupled channels, which accounts for the important
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contributions of the nearby A(1405) resonance. By impos-
ing constraints from unitarity we perform the resummation
of the amplitudes obtained from the tree level amplitudes
and the loop integrals.

The relativistic tree level amplitudes V,,; ,,(s, Q; o, o)
for the meson-baryon scattering processes BJ ¢; — Bg/ ®b;
(with spin indices o, ¢’) at leading chiral orders are
obtained from both the contact interactions and the direct
and crossed Born terms derived from the Lagrangian L.
Since we are primarily concerned with a narrow center-of-
mass energy region around the KN threshold, it is suffi-
cient to restrict ourselves to the s-wave (matrix) amplitude
V(s) which is given by

V(s) = — Z f dOV(s, Q: 0, o), ©)

where we have averaged over the spin o of the baryons and
s is the invariant energy squared.

For each partial wave unitarity imposes a restriction on
the (inverse) T matrix above the pertinent thresholds

|gcml
8my/s’

with the three-momentum ¢, in the center-of-mass frame
of the channel under consideration. Hence the imaginary
part of 77! is given by the imaginary part of the basic
scalar loop integral G above threshold,

Im77!=—

(N

d4l i
Qm)? [(q — 1P — M} + ie]l? — m? + ie]’
(8)

where My and m are the physical masses of the baryon

G(g®) =

and the meson, respectively. For the finite part G of G, one
obtains, e.g., in dimensional regularization:

ol [1“(",12> ~n(3)-2]
+ (my — M%)ln( >—8\/—|qcm
2V¢|gen >}

(mg + Mp)* — ¢*

G(g*) = a(p) +

X artanh( 9

where w is the regularization scale. The subtraction con-
stant a(w) cancels the scale dependence of the chiral
logarithms and simulates higher order contributions with
the value of a(u) depending on the respective channel;
cf. [5].

To the order we are working the inverse of the 7" matrix
is written as

T'=Vv1+G (10)

which yields

T=[1+V-G]'V. (11)

Equation (11) is understood as a matrix equation in each
partial wave. The diagonal matrix G collects the loop
integrals in each channel. This amounts to a summation
of a bubble chain to all orders in the s channel, equivalent
to solving a Bethe-Salpeter equation with V as driving
term.

We perform a global y? fit to a large amount of data,
including K™ p scattering into coupled S = —1 channels,
the threshold branching ratios of K~ p into 72 and 7°A
channels, the 772 mass spectrum, and the shift and width of
kaonic hydrogen recently measured at DEAR [1]. The
resulting values of the subtraction constants a(u) at u =
1 GeV are agy(u) =0.95 X 1073, a,r(u) = —0.59 X
1073, a,s(pn) =180 X 1073, a,z(un)=292X1073,
ays(pn) =098 X 1073, and agz(u) = 2.90 X 1073, For
the couplings b;, d; we find (in units of GeV™') b, =
—0.362, bp =0.002, br = —0.128, and d; = —0.11,
d, = 0.05, d3 = 0.31, dy = —0.32. The decay constant
in the chiral limit, f, is varied between the physical values
of the pion decay constant F,, = 92.4 MeV and the kaon
decay constant, Fxy = 112.7 MeV, since both pions and
kaons are involved in the coupled channels. The present fit
yields f = 103.1 MeV.

The Coulomb interaction has been shown to yield
significant contributions to the elastic K~ p scatter-
ing amplitude up to kaon laboratory momenta of
100-150 MeV/c [12]. Close to K~ p threshold the elec-
tromagnetic meson-baryon interactions are thus important
and should not be neglected as in previous coupled-
channels calculations [3—6,8]. We account for these cor-
rections by adding the quantum mechanical Coulomb scat-
tering amplitude to the strong elastic K~ p amplitude,
I8 k- = 1/@Bm/s)TR" ,_ k- ,- The total elastic cross
section is then obtained by performing the integration over
the center-of-mass scattering angle. Since this integral is
infrared divergent in the presence of the Coulomb ampli-
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FIG. 1. Real (solid line) and the imaginary part (dashed line)
of the strong K~ p — K~ p amplitude, f}}lp_,,rp, as defined in
the text. The data points represent the real and imaginary parts of
the K~ p scattering length, derived from the DEAR experiment
[1] with inclusion of isospin breaking corrections according to
Ref. [18].
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tude, a cutoff at extreme forward scattering angles must be
introduced which we choose to be cosf.,, = 0.966—the
value employed in the data analyses of Refs. [13,14]. The
more detailed calculation will be presented in forthcoming
work [15].

The results of the fit can be summarized as follows. The
strong-interaction part of the K~ p amplitude, f%" p—K-po 18
presented in Fig. 1. At threshold we obtain the K~ p strong-
interaction scattering length

ag-, = (—0.51 + 0.82i) fm. (12)

The 72 mass spectrum in the isospin / = 0 channel is
shown in Fig. 2, while the total cross sections of K™ p
scattering to various channels are displayed in Fig. 3.

Additional tight constraints are provided by the well-
measured threshold ratios of the K™~ p system for which we
find:

(K p—7mt37)
A 'K p—am X%
_ IKp—m"32, 7 3%
CT(K™ p — all inelastic channels)
_ (K~ p— 7°A) _
CT(K p — neutral states) B

= 2.35,

=0.653,  (13)

c

0.194.

n

The experimental values y = 2.36 = 0.04, R, = 0.664 =
0.011, R, = 0.189 £ 0.015 [16,17] are perfectly well re-
produced by our approach. (We mention in passing that this
fit does not support a pronounced two-pole structure in the
region of the A(1405) as advocated in Ref. [8].)

It turns out, however, that these results cannot be brought
to simultaneous satisfactory agreement with the elastic
K™ p total cross section and with the strong-interaction
shift and width in kaonic hydrogen measured at DEAR
[1]. We find AE = 236 eV and I' = 580 eV (with inclu-
sion of isospin breaking corrections following [18]); see
Fig. 4. In comparison with previous coupled-channels cal-
culations, the situation is ameliorated by including elec-
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FIG. 2. The 7% mass spectrum in the isospin I = 0 channel.
The solid curve is obtained from the overall y? fit to all available
data. The dashed curve is found with the additional constraint of
remaining within the error margins of the DEAR data. The
experimental histograms are taken from [22]. The statistical
errors have been supplemented following [23].

tromagnetic corrections to K~ p scattering which are
important close to threshold. Nevertheless, inclusion of
the Coulomb interaction cannot account for the apparent
gap between the DEAR result and the bulk of the existing
elastic K~ p scattering data (the latter are, admittedly, of
low precision). While there is consistency with the new
value for the energy shift in kaonic hydrogen, it is now
difficult to accommodate the scattering data with the much
improved accuracy of the measured width [1]. (Note that
the radiative decays of K~ p into Ay and 27y are expected
to contribute less than 1% to the decay width of kaonic
hydrogen and can be safely omitted [19].)

The results of our calculations represent an ‘“‘optimal’
compromise between the various existing data sets. If, on
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FIG. 3. Cross sections of K~ p scattering into various channels
obtained from the overall y? fit to all available data (solid curve)
and with the additional constraint of remaining within the DEAR
data (dashed line). The data are taken from [13] (empty squares),
[14] (empty triangles), [24] (full circles), [25] (full squares), [26]
(full triangles), and [27] (stars).
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FIG. 4. Results for the strong-interaction shift and width of
kaonic hydrogen from our approach, both by using the Deser-
Trueman formula [28] (empty circle) and by including isospin
breaking corrections [18] (full circle). The DEAR data are
represented by the shaded box [1], and the KEK data by the
light gray box [20]. The fit restricted to the DEAR data is
represented by the small full rectangle (empty rectangle without
isospin breaking corrections).

the other hand, one imposes the constraint of remaining
strictly within the error band of the DEAR data, the fit
yields AE = 235eV, I' =390 eV, which corresponds
to a strong-interaction scattering length ay-, = (—0.57 +
0.56i) fm. With this constraint imposed, we obtain y =
2.38, R, = 0.631, R, = 0.176, and a shifted 7> mass
spectrum (dashed curve in Fig. 2), while the calculated
K™ p scattering cross sections move to the dashed curves in
Fig. 3.

We have also performed fits omitting the DEAR results.
Our calculations are then in good agreement with all
scattering data including the elastic K~ p channel. The
fits are also within the (larger) error bars of the previous
KEK measurement [20]. We have furthermore convinced
ourselves that we obtain qualitatively similar results by
applying several variants of the approach presented here:
first by using only the Weinberg-Tomozawa part of the
driving term V, then by adding subsequently the higher
order contact interactions b;, d; and the direct Born term.
These studies will be discussed in detail in a forthcoming
report [15].

In conclusion, the present updated analysis of low-
energy K™ -proton interactions, combining the next-
to-leading order chiral SU(3) effective Lagrangian with
an improved coupled-channels approach, emphasizes the
importance of the constraints set by the new accurate
kaonic hydrogen data from the DEAR experiment. At the
same time this analysis points to questions of consistency
with previously measured sets of K~ p scattering data.
Developments aiming for a precision at the level of a few
electron volts in the shift and width of kaonic hydrogen,
foreseen at DA®PNE in the near future, will further clarify
the situation.

The new constrained analysis of the KN amplitude
presented here is also of considerable interest in view of
the continuing quest for kaon condensation in dense bary-
onic matter, and for the possible existence of deeply bound

kaon-nuclear states, an issue which is presently under
lively discussion [21].
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